Skip to main content
Log in

Enhanced Oxidation of Uric Acid at Thiourea-Modified Gold Electrode in Alkaline Media

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The surface of polycrystalline gold (Au (poly)) electrode was ex situ modified with self-assembled monolayer (SAM) of thiourea (TU) with a view of applying the electrode for the electrochemical oxidation of uric acid (UA) in alkaline media. UA undergoes an enhanced electrochemical oxidation at the monolayer of TU-modified Au (poly) (TU|Au (poly)) electrode at a remarkably lower potential with a higher current density as compared to the bare Au (poly) electrode. The enhanced activity of the electrode was achieved due to the effective blocking of harmful adsorption of UA that takes place strongly at the bare Au (poly) electrode surface. The TU|Au (poly) electrode was also found to be very effective towards simultaneous oxidations of UA, ascorbic acid (AA) and dopamine (DA) in their mixture with well separation of the peak current of the individual substance. This technique may be advantageously utilized for developing sensor for the purpose of detection of UA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Lin, K.C., Lin, H.Y., and Chou, P., The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study, J. Rheumatol., 2001, vol. 27, p. 1501.

    Google Scholar 

  2. Johnson, R.J., Kang, D.-H., Feig, D., and Kivlighn, S., Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?, Hypertension, 2003, vol. 41, p. 1183.

    CAS  PubMed  Google Scholar 

  3. Bos, M.J., Koudstaal, P.J., and Hofman, A., Uric acid is a risk factor for myocardial infarction and stroke: th Rotterdam study, Stroke, 2006, vol. 37, p. 1503.

    CAS  PubMed  Google Scholar 

  4. Yan, J., Liu, S., and Zhang, Z., Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles, Colloids Surf. B: Biointerfaces, 2013, vol. 111, p. 392.

    CAS  PubMed  Google Scholar 

  5. Zhao, D., Yu, G., Tian, K., and Xu, C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 2016, vol. 82, p. 119.

    CAS  PubMed  Google Scholar 

  6. Luping, S., Hongji, L., and Mingji, L., Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode, J. Electroanal. Chem., 2016, vol. 783, p. 167.

    Google Scholar 

  7. Lavanya, N., Fazio, E., and Neri, F., Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 770, p. 23.

    CAS  Google Scholar 

  8. Anju, J., Wolfgang, S., and Tharamani, N.C., Mesoporous nitrogen containing carbon materials for the simultaneous detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B, 2016, vol. 230, p. 544.

    Google Scholar 

  9. Qing, Z., Jing, B., and Danqun, H., 3D graphene hydrogel-gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sens. Actuators B, 2017, vol. 238, p. 1316.

    Google Scholar 

  10. Eser, E., Şerife, K., Derya, K.Z., and Bülent, Z., Simultaneous electrochemical determination of ascorbic acid and uric acid using poly(glyoxal-bis(2-hydroxyanil)) modified glassy carbon electrode, Sens. Actuators B, 2016, vol. 224, p. 55.

    Google Scholar 

  11. Qin, Q., Xue, B., and Zulin, H., Electropolymerization of a conductive cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, J. Electroanal. Chem., 2016, vol. 782, p. 50.

    CAS  Google Scholar 

  12. Kumar, S.P., Manjunatha, R., Venkatesha, T.V., and Suresh, G.S., Polystyrene sulphonate wrapped multiwalled carbon nanotubes modified graphite electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Russ. J. Electrochem., 2013, vol. 49, p. 299.

    CAS  Google Scholar 

  13. Ma, X., Chao, M., and Chen, M., Simultaneous electrochemical determination of norepinephrine, ascorbic acid and uric acid using a graphene modified glassy carbon electrode, Russ. J. Electrochem., 2014, vol. 50, p. 154.

    CAS  Google Scholar 

  14. Retna Raj, C. and Ohsaka, T., Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, J. Electroanal. Chem., 2003, vol. 540, p. 69.

    CAS  Google Scholar 

  15. Protiva, R.R., Takeyoshi, O., and Ohsaka, T., Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode, J. Electroanal. Chem., 2004, vol. 561, p. 75.

    Google Scholar 

  16. Miah, Md.R., Masud, J., and Ohsaka, T., In situ fabricated iodine-adlayer assisted selective electrooxidation of uric acid in alkaline media, Electrochim. Acta, 2008, vol. 54, p. 316.

    CAS  Google Scholar 

  17. Miah, Md.R., Alam, M.T., and Ohsaka, T., Sulfur-adlayer-coated gold electrode for the in vitro electrochemical detection of uric acid in urine, Anal. Chim. Acta, 2010, vol. 669, p. 75.

    CAS  PubMed  Google Scholar 

  18. Emad, A.K. and Aysha, A.A., Electrochemical oxidation of dopamine and ascorbic acid at a palladium electrode modified with in situ fabricated iodine-adlayer in alkaline solution, Talanta, 2010, vol. 80, p. 1919.

    Google Scholar 

  19. Raj, C.R., Kitamura, F., and Ohsaka, T., Square wave voltammetric sensing of uric acid using the self-assembly of mercaptobenzimidazole, Analyst, 2002, vol. 9, p. 1155.

    Google Scholar 

  20. Liang, W., Jun, Y.B., and Peng, F.H., Selective determination of uric acid in the presence of ascorbic acid using a penicillamine self-assembled gold electrode, Microchim. Acta, 2007, vol. 158, p. 73.

    Google Scholar 

  21. Jie, Z. and Guofeng, C., Study on adsorption and complexation behavior of thiourea on copper surface, Int. J. Electrochem. Sci., 2011, vol. 6, p. 4048.

    Google Scholar 

  22. Mouang, M. and Berçot, P., Electrochemical analysis of thiourea on platinum in non-aqueous electrolyte, Int. J. Electrochem. Sci., 2011, vol. 6, p. 1007.

    Google Scholar 

  23. Vitali, G., Heili, K., Silvar, K., and Enn, L., Adsorption of thiourea on Bi(1 1 1) electrode surface, J. Electroanal. Chem., 2014, vol. 712, p. 103.

    Google Scholar 

  24. Gonzalo, G., Vicente, A.M., and Gabriela, I.L., Study of thiourea adsorption onto polycrystalline gold electrodes, Electrochim. Acta, 2003, vol. 48, p. 1273.

    Google Scholar 

  25. Magali, Q., Fabrice, L., and Laurence, R., Adsorption of thiourea on polycrystalline platinum: Influence on electrodeposition of copper, Surf. Coat. Technol., 2010, vol. 204, p. 3108.

    Google Scholar 

  26. Patrito, E.M., Cometto, F.P., and Paredes-Olivera, P., Quantum mechanical investigation of thiourea adsorption on Ag(111) considering electric field and solvent effects, J. Phys. Chem. B, 2004, vol. 108, p. 15755.

    CAS  Google Scholar 

  27. Ulman, A., An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, New York: Acad. Press, 1991.

    Google Scholar 

  28. Swalen, J.D., Allara, D.L., and Andrade, J.D., Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy, Langmuir, 1987, vol. 3, p. 932.

    CAS  Google Scholar 

  29. Gonzalez-Granados, Z., Sánchez-Obrero, G., and Madueno, R., Formation of mixed monolayers from formation of mixed monolayers from 11-mercaptoundecanoic acid and octanethiol on Au(111) single crystal electrode under electrochemical control, J. Phys. Chem. C, 2013, vol. 117, p. 24307.

    CAS  Google Scholar 

  30. Ahmad, A. and Moore, E., Electrochemical immuneosensor modified with self-assembled monolayer of 11‑mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water, Analyst, 2012, vol. 137, p. 5839.

    CAS  PubMed  Google Scholar 

  31. Warakorn, L., Proespichaya, K., and Bo, M., A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid, Biosens. Bioelectron., 2006, vol. 22, p. 233.

    Google Scholar 

  32. Xinxin, X., Jens, U., Hui, L., Meng’en, W., and Jingdong, Z., Nanoporous gold assembly of glucose oxidase for electrochemical biosensing, Electrochim. Acta, 2014, vol. 130, p. 559.

    Google Scholar 

  33. Mohamed, S.E.-D. and Ohsaka, T., Molecular-level design of binary self-assembled monolayers on polycrystalline gold electrodes, Electrochim. Acta, 2004, vol. 49, p. 2189.

    Google Scholar 

  34. El-deab, M.S., Arihara, K., and Ohsaka, T., Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction, J. Elctrochem. Soc. 2004, vol. 151, p. E213.

    CAS  Google Scholar 

  35. Miah, Md.R. and Ohsaka, T., Electrochemical oxidation of hydrogen peroxide at a bromine adatom-modified gold electrode in alkaline media, Electrochim. Acta, 2009, vol. 54, p. 1570.

    CAS  Google Scholar 

  36. Chang, C.C., Yau, S.L., Tu, J.W., and Yang, J.S., Examination of the electrified interfaces of Au(111) in 0.1 M HClO4 containing organic iodide compounds with cyclic voltammetry and in situ scanning tunneling microscopy, Surf. Sci., 2003, vol. 523, p. 59.

    CAS  Google Scholar 

  37. Hongguang, Z., Ian, M.R., and Steve, R.L.B., Electrochemical oxidation of gold and thiourea in acidic thiourea solutions, J. Electrochem. Soc., 2001, vol. 148, p. D146.

    Google Scholar 

  38. Miah, Md.R. and Ohsaka, T., Cathodic detection of H2O2 using iodide-modified gold electrode in slkaline media, Anal. Chem., 2006, vol. 78, p. 1200.

    CAS  PubMed  Google Scholar 

  39. Zhong, C.-J., Woods, N.T., Dawson, G.B., and Porter, M.D., Formation of thiol-based monolayers on gold: implications from open circuit potential measurements, Electrochem. Commun., 1999, vol. 1, p. 17.

    CAS  Google Scholar 

  40. Cohen-Atiya, M. and Mandler, D., Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements, J. Electroanal. Chem., 2003, vol. 550–551, p. 267.

    Google Scholar 

  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamental and Applications, New York: John Wiley and Sons, 2001, chapters 3 and 14.

    Google Scholar 

  42. Riyanto and Imaylina R., Preparation and application of nickel plating on copper electrode (NPCE) for uric acid analysis in human urine using cyclic voltammetry, Int. J. Electrochem. Soc., 2019, vol. 14, p. 2290.

  43. Abellán-Llobregat, A., Ayán-Varela, M., Vidal, L., Paredes, J.I., Villar-Rodil, S., Canals, A., and Morallón, E., Flavin mononucleotide-exfoliated graphene flakes as electrodes for the electrochemical determination of uric acid in the presence of ascorbic acid, J. Electroanal. Chem., 2016, vol. 783, p. 41.

    Google Scholar 

  44. Rezaei, R., Foroughi, M.M., Beitollahi, H., and Alizadeh, R., Electrochemical sensing of uric acid using a ZnO/graphene nanocomposite modified graphite screen printed electrode, Russ. J. Electrochem., 2018, vol. 54, p. 860.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Miah.

Ethics declarations

We declare that we do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manny, T.F., Miah, R., Islam, F. et al. Enhanced Oxidation of Uric Acid at Thiourea-Modified Gold Electrode in Alkaline Media. Russ J Electrochem 56, 570–577 (2020). https://doi.org/10.1134/S1023193520070046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520070046

Keywords:

Navigation