Skip to main content
Log in

Some Specific Features in the Applying the Method of Raman Spectroelectrochemistry while Studying Polyaniline Electrosynthesis in Polymeric-Acid Medium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Initial stages of aniline galvanostatic polymerization at platinum electrode in aqueous solutions of poly-2-acrylamido-2-methyl-1-propansulfonic acid and polystyrenesulfonic acid are studied by the method of Raman spectroelectrochemistry. A laser with wavelength of 532 nm excited the Raman scattering. The very presence of intermolecular associates able to luminescence in the polyacid solution (in the case of polystyrenesulfonic acid) was shown to result in the Raman-spectrometer photodetector overload if normal incidence of laser beam at the electrode (the angle 0°) was used. The Raman-spectrometer photodetector overload can be avoided by the varying of the incidence angle over the 0°–20° range, even without using other techniques (leading to a decrease in the reliability of the studied Raman band registration, such as the lowering of the integration time, intensity or energy of the excitation). Comparative study of aniline electropolymerization in the presence of poly-2-acrylamido-2-methyl-1-propansulfonic acid, polystyrenesulfonic acid, and HCl revealed some characteristic bands in the Raman spectra of the polyaniline–polyacid complexes in the Raman frequency range from 2000 to 3000 сm–1; these bands relate to the polyacid’s backbone and are absent in the Raman spectra of the polyaniline–HCl film. The dynamics of changes in the contribution to the integral Raman spectrum of the band of radical-cations (1330–1350 сm–1) characterizing the highly conductive emeraldine form of polyaniline was compared for the polymerization media. In the course of the electrosynthesis it was found, that the accumulation rate of these species in the film decreased in the series poly-2-acrylamido-2-methyl-1-propansulfonic acid > HCl > polystyrenesulfonic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Inzelt, G., Conducting Polymers: A New Era of Electrochemistry. Second Edition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 85–86.

    Book  Google Scholar 

  2. Lapkowski, M., Berrada, K., Quillard, S., Louarn, G., Lefrant, S., and Pron, A., Electrochemical Oxidation of Polyaniline in Nonaqueous Electrolytes: “In Situ” Raman Spectroscopic Studies, Macromolecules, 1995, vol. 28, no. 4, p. 1233.

    Article  CAS  Google Scholar 

  3. Shah, A.-H.A. and Holze, R., Spectroelectrochemistry of two-layered composites of polyaniline and poly(o-aminophenol), Electrochim. Acta, 2008, vol. 53, no. 14, p. 4642.

    Article  CAS  Google Scholar 

  4. Mažeikienė, R., Niaura, G., and Malinauskas, A., Raman spectroelectrochemical study of polyaniline at UV, blue, and green laser line excitation in solutions of different pH, Synth. Met., 2018, vol. 243, p. 97.

    Article  Google Scholar 

  5. Mažeikienė, R., Niaura, G., and Malinauskas, A., Red and NIR laser line excited Raman spectroscopy of polyaniline in electrochemical system, Synth. Met., 2019, vol. 248, p. 35.

    Article  Google Scholar 

  6. Morávková, Z. and Dmitrieva, E., Structural changes in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry, J. Raman Spectrosc., 2017, vol. 48, p. 1229.

    Article  Google Scholar 

  7. Holze, R., Raman spectroscopic investigation of aniline: adsorption and polymerisation, J. Electroanal. Chem., 1987, vol. 224, no. 1–2, p. 253.

    Article  CAS  Google Scholar 

  8. Efremova, A., Regis, A., and Arsov, L., Electrochemical formation and deposition of polyaniline on electrode surface; In situ raman spectroscopical study, Electrochim. Acta, 1994, vol. 39, no. 6, p. 839.

    Article  CAS  Google Scholar 

  9. Saçak, M., Akbulut, U., and Batchelder, D.N., Monitoring of electroinitiated polymerization of aniline by Raman microprobe spectroscopy, Polymer, 1998, vol. 40, no. 1, p. 21.

    Article  Google Scholar 

  10. Mažeikienė, R., Niaura, G., and Malinauskas, A., In situ time-resolved Raman spectroelectrochemical study of aniline polymerization at platinum and gold electrodes, Chemija, 2018, vol. 29, no. 2, p. 81.

    Article  Google Scholar 

  11. Mažeikienė, R., Niaura, G., and Malinauskas, A., Raman spectroelectrochemical study of electrode processes at hybrid polyaniline – copper hexacyanoferrate modified electrode, J. Electroanal. Chem., 2018. vol. 808. p. 228.

    Article  Google Scholar 

  12. Gribkova, O.L., Nekrasov, A.A., Isakova, A.A., Ivanov, V.F., and Vannikov, A.V., Specific features characterizing electrochemical synthesis of polyaniline conducted in the presence of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and the spectroelectrochemical characteristics of the obtained films, Russ. J. Electrochem., 2006, vol. 42, no. 10, p. 1085.

    Article  CAS  Google Scholar 

  13. Lyutov, V., Georgiev, G., and Tsakova, V., Comparative study on the electrochemical synthesis of polyaniline in the presence of mono- and poly(2-acrylamido-2-methyl-1-propanesulfonic) acid, Thin Solid Films, 2009, vol. 517, no. 24, p. 6681.

    Article  CAS  Google Scholar 

  14. Nakova, A., Ilieva, M., Boiadjieva-Scherzer, T., and Tsakova, V., High-density Pd nanoparticles distribution on PEDOT obtained through electroless metal deposition on pre-reduced polymer layers, Electrochim. Acta, 2017, vol. 253, p. 128.

    Article  CAS  Google Scholar 

  15. Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., Tameev, A.R., and Vannikov, A.V., Ultraviolet-Visible-Near Infrared and Raman spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) complexes with sulfonated polyelectrolytes. The role of inter- and intra-molecular interactions in polyelectrolyte, Electrochim. Acta, 2016, vol. 222, p. 409.

    Article  CAS  Google Scholar 

  16. Iakobson, O.D., Gribkova, O.L., Nekrasov, A.A., and Vannikov, A.V., The effect of counterion in polymer sulfonates on the synthesis and properties of poly-3,4-ethylenedioxythiophene, Russ. J. Electrochem., 2016, vol. 52, no. 12, p. 1191.

    Article  CAS  Google Scholar 

  17. Nekrasov, A.A., Gribkova, O.L., Ivanov, V.F., and Vannikov, A.V., Electroactive films of interpolymer complexes of polyaniline with polyamidosulfonic acids: advantageous features in some possible applications, J. Solid State Electrochem., 2010, vol. 14, no. 11, p. 1975.

    Article  CAS  Google Scholar 

  18. Kondratiev, V.V., Malev, V.V., and Eliseeva, S.N., Composite electrode materials based on conducting polymers loaded with metal nanostructures, Russ. Chem. Rev., 2016, vol. 85, no. 1, p. 14.

    Article  CAS  Google Scholar 

  19. Nekrasov, A.A., Gribkova, O.L., Iakobson, O.D., Ardabievskii, I.N., Ivanov, V.F., and Vannikov, A.V., Raman spectroelectrochemical study of electrodeposited polyaniline doped with polymeric sulfonic acids of different structures, Chem. Pap., 2017, vol. 71, no. 2, p. 449.

    Article  CAS  Google Scholar 

  20. Nekrasov, A.A., Iakobson, O.D., Gribkova, O.L., Ivanov, V.F., and Tsakova, V., Angular dependence of the Raman spectra for electroactive polymer films on a platinum electrode. Russ. J. Electrochem., 2019, vol. 55, no. 3, p. 175.

    Article  CAS  Google Scholar 

  21. Luo, J., Jiang, S., Liu, R., Zhang, Y., and Liu, X., Synthesis of water dispersible polyaniline/poly(styrenesulfonic acid) modified graphene composite and its electrochemical properties, Electrochim. Acta, 2013, vol. 96, p. 103.

    Article  CAS  Google Scholar 

  22. Meriga, V., Valligatla, S., Sundaresan, S., Cahill, C., Dhanak, V.R., Chakraborty, A.K., Optical, electrical, and electrochemical properties of graphene based water soluble polyaniline composites, J. Appl. Polym. Sci., 2015. vol. 132, no. 45. p. 42766.

    Article  Google Scholar 

  23. Wang, Z., Pakoulev, A., Pang, Y., and Dlott, D.D., Vibrational Substructure in the OH Stretching Transition of Water and HOD, J. Phys. Chem. A, 2004, vol. 108, no. 42, p. 9054.

    Article  CAS  Google Scholar 

  24. Tan, J.S. and Marcus, P.R., Ion binding in sulfonate-containing polyelectrolytes, J. Polym. Sci. Polym. Phys. Ed., 1976, vol. 14, no. 2, p. 239.

    Article  CAS  Google Scholar 

  25. Laurinavichute, V.K., Vassiliev, Yu.S., Khokhlov, A.A., Plyasova, L.M., Molina, I.Y., and Tsirlina, G.A., Electrodeposited oxotungstate films: Towards the molecular nature of recharging processes, Electrochim. Acta, 2011, vol. 56, no. 10, p. 3530.

    Article  CAS  Google Scholar 

  26. Qi, Y., Hu, Y., Xie, M., Xing, D., and Gu, H., Adsorption of aniline on silver mirror studied by surface-enhanced Raman scattering spectroscopy and density functional theory calculations, J. Raman Spectrosc., 2011, vol. 42, no. 6, p. 1287.

    Article  CAS  Google Scholar 

  27. Gribkova, O.L., Nekrasov, A.A., Ivanov, V.F., Zolotorevsky, V.I., and Vannikov, A.V., Templating effect of polymeric sulfonic acids on electropolymerization of aniline, Electrochim. Acta, 2014, vol. 122, p. 150.

    Article  CAS  Google Scholar 

  28. Nekrasov, A.A., Gribkova, O.L., Zolotarevskii, V.I., Isakova, A.A., Ivanov, V.F., and Vannikov, A.V., Effect of polymer sulfoacids with varying chain rigidity on the nucleation of their interpolymer complexes with polyaniline during electropolymerization on highly orientated pyrolytic graphite, Russ. J. Electrochem., 2014, vol. 50, no. 12, p. 1105.

    Article  CAS  Google Scholar 

  29. Cui, W.-W., Tang, D.-Y., Lu, Y.-S., Zhang, N., Liu, L.-Z., and Mu, J.-L., Shape stability enhancement of PVDF electrospun polymer electrolyte membranes blended with poly(2-acrylamido-2-methylpropanesulfonic acid lithium), Iran. Polym. J., 2017, vol. 26, no. 3, p. 179.

    Article  CAS  Google Scholar 

  30. Estrela-Lopis, I., Iturri Ramos, J.J., Donath, E., and Moya, S.E., Spectroscopic Studies on the Competitive Interaction between Polystyrene Sodium Sulfonate with Polycations and the N -Tetradecyl Trimethyl Ammonium Bromide Surfactant, J. Phys. Chem. B, 2010, vol. 114, no. 1, p. 84.

    Article  CAS  Google Scholar 

  31. Larkin, P., Infrared and Raman Spectroscopy, Elsevier, 2011.

    Google Scholar 

  32. Avakyants, L.P., Gorelik, V.S., Temper, E.M., and Shcherbina, S.M., Raman scattering in a near-surface n-GaAs layer implanted with boron ions, Phys. Solid State, 1999, vol. 41, no. 8, p. 1369.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to S.I. Posin for the measurements of luminescence spectra.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-53-18009 Bolg_а) and the Ministry of Education and Sciences of RF (the development of the method and setup for Raman spectra registration at a variable laser-beam incidence angle).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nekrasov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, A.A., Iakobson, O.D. & Gribkova, O.L. Some Specific Features in the Applying the Method of Raman Spectroelectrochemistry while Studying Polyaniline Electrosynthesis in Polymeric-Acid Medium. Russ J Electrochem 55, 1077–1085 (2019). https://doi.org/10.1134/S1023193519110119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110119

Keywords:

Navigation