Skip to main content
Log in

Influence of Manganese Ions on the Electrodeposition Process of Lead Dioxide in Lead Nitrate Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of manganese ions on the electrodeposition process of lead dioxide on the glassy carbon electrode (GCE) in the lead nitrate solution was investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results show that the electrodeposition process of lead dioxide was inhibited by the addition of manganese ions. However, the nucleation model is not influenced by the addition of manganese ions and the electrodeposition process still fits the instantaneous nucleation model with three-dimensional growth according to Scharifker—Hills’ model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramirez, G., Recio, F.J., Herrasti, P., Ponce-de-Leon, C., and Sires, I., Effect of RVC porosity on the performance of PbO2 composite coatings with titanate nano-tubes for the electrochemical oxidation of azo dyes, Electrochim. Acta, 2016, vol. 204, p. 9.

    Article  CAS  Google Scholar 

  2. Amadelli, R., Samiolo, L., Battisti, A., and Velichenko, A.B., Electro-oxidation of some phenolic compounds by electrogenerated O3 and by direct electrolysis at PbO2 anodes, J. Electrochem. Soc., 2011, vol. 158, p. P87.

    Article  CAS  Google Scholar 

  3. Egan, D.R.P., Low, C.T.J., and Walsh, F.C., Electro-deposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery, J. Power Sources, 2011, vol. 196, p. 5725.

    Article  CAS  Google Scholar 

  4. Shmychkova, O., Luk’yanenko, T., Yakubenko, A., Amadelli, R., and Velichenko, A., Electrooxidation of some phenolic compounds at Bi-doped PbO2, Appl. Catal. B-Environ, 2015, vol. 162, p. 346.

    Article  CAS  Google Scholar 

  5. Dai, Q.Z., Zhou, J.Z., Weng, M.L., Luo, X.B., Feng, D.L., and Chen, J.M., Electrochemical oxidation metronidazole with Co modified PbO2 electrode: degradation and mechanism, Sep. Purif. Technol., 2016, vol. 166, p. 109.

    Article  CAS  Google Scholar 

  6. Andrade, L.S., Ruotolo, L.A.M., Rocha-Filho, R.C., Bocchi, N., Biaggio, S.R., Iniesta, J., Garcia-Garcia, V., and Montiel, V., On the performance of Fe and Fe,F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile waste-water, Chemosphere, 2007, vol. 66, p. 2035.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, M., Wang, Z.C., Wang, F.W., Hong, P., Wang, C.Y., Ouyang, X.M., Zhu, C.G., Wei, Y.J., Hun, Y.H., and Fang, W.Y., Fabrication of cerium doped Ti/nano-TiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation, Electrochim. Acta, 2016, vol. 201, p. 240.

    Article  CAS  Google Scholar 

  8. Xu, H., Shao, D., Zhang, Q., Yang, H.H., and Yan, W., Preparation and characterization of PbO2 electrodes from electro-deposition solutions with different copper concentration, RSC Adv., 2014, vol. 4, p. 25011.

    Article  CAS  Google Scholar 

  9. Dalili, N., Clark, M.P., Davari, E., and Ivey, D.G., Microstructural characterization of the cycling behavior of electrodeposited manganese oxide supercapacitors using 3D electron tomography, J. Power Sources, 2016, vol. 328, p. 318.

    Article  CAS  Google Scholar 

  10. Li, Y.J., Wang, G.L., Ye, K., Cheng, K., Pan, Y., Yan, P., Yin, J.L., and Cao, D.X., Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance, J. Power Sources, 2014, vol. 271, p. 582.

    Article  CAS  Google Scholar 

  11. Li, X.H. and Pletcher, D., Electrodeposited lead dioxide coatings, Chem. Soc. Rev., 2011, vol. 40, p. 3879.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y., Jiang, L.X., Liu, F.Y., Li, J., and Liu, Y.X., Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction, RSC Adv., 2014, vol. 4, p. 24020.

    Article  CAS  Google Scholar 

  13. Comisso, N., Cattarin, S., Guerriero, P., Mattarozzi, L., Musiani, M., and Verlato, E., Conversion of porous Mn2+ ions, Electrochem. Commun., 2016, vol. 73, p. 59.

    Article  CAS  Google Scholar 

  14. Yang, H.T., Chen, B.M., Liu, H.R., Guo, Z.C., Zhang, Y.C., Li, X.L., and Xu, R.D., Effects of manganese nitrate concentration on the performance of an aluminum substrate ß-PbO2–MnO2–WC–ZrO2 composite electrode material, Int. J. Hydrogen Energy, 2014, vol. 39, p. 3087.

    Article  CAS  Google Scholar 

  15. Li, P., Zhao, Y.M., Ding, B.B., and Wang, L.Z., Effect of calcination temperature and molar ratio of tin and manganese on capacitance of Ti/SnO2–Sb–Mn/ß–PbO2 electrode during phenol electro-oxidation, J. Electroanal. Chem., 2015, vol. 747, p. 45.

    Article  CAS  Google Scholar 

  16. Dan, Y.Y., Lin, H.B., Liu, X.L., Lu, H.Y., Zhao, J.Z., Shi, Z., and Guo, Y.P., Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material, Electrochim. Acta, 2012, vol. 83, p. 175.

    Article  CAS  Google Scholar 

  17. Abyaneh, M.Y., Saez, V., Gonzalez-Garcia, J., and Mason, T.J., Electrocrystallization of lead dioxide: analysis of the early stages of nucleation and growth, Electrochim. Acta, 2010, vol. 55, p. 3572.

    Article  CAS  Google Scholar 

  18. Hwang, B.J., Santhanam, R., and Chang, Y.W., Mechanism of electrodeposition of PbO2 at a Pt sheet/rotating disk electrode, Electroanalysis, 2002, vol. 14, p. 5363.

    Article  Google Scholar 

  19. Velichenko, A.B., Girenko, D.V., and Danilov, F.I., Electrodeposition of lead dioxide at an Au electrode, Electrochim. Acta, 1995, vol. 40, p. 2803.

    Article  CAS  Google Scholar 

  20. Gonzalez-Garcia, J., Iniesta, J., Exposito, E., GarciaGarcia, V., Montiel, V., and Aldaz, A., Early stages of lead dioxide electrodeposition on rough titanium, Thin Solid Films, 1999, vol. 352, p. 49.

    Article  Google Scholar 

  21. Gonzalez-Garcia, J., Gallud, F., Iniesta, J., Montiel, V., Aldaz, A., and Lasia, A., Kinetics of electrocrystallisation of PbO2 on glassy carbon electrodes: influence of ultrasound, New J. Chem., 2001, vol. 25, p. 1195.

    Article  CAS  Google Scholar 

  22. Saez, V., Gonzalez-Garcia, J., Iniesta, J., Frias-Ferrer, A., and Aldaz, A., Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound frequency, Electrochem. Commun., 2004, vol. 6, p. 757.

    Article  CAS  Google Scholar 

  23. Velichenko, A.B., Amadelli, R., Knysh, V.A., Luk’yanenko, T.V., and Danilov, F.I., Kinetics of lead dioxide electrodeposition from nitrate solutions containing colloidal TiO2, J. Electroanal. Chem., 2009, vol. 632, p. 192.

    Article  CAS  Google Scholar 

  24. Lin, Z.B., Xie, B.G., Chen, J.S., Sun, J.J., and Chen, G.N., Nucleation mechanism of silver nucleation mechanism of silver during electrodeposition on a glassy carbon electrode from a cyanide-free bath with 2-hydroxypyridine as a complexing agent, J. Electroanal. Chem., 2009, vol. 633, p. 207.

    Article  CAS  Google Scholar 

  25. Yao, Y.W., Zhou, T., Zhao, C.M., Jing, Q.M., and Wang, Y., Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath, Electrochim. Acta, 2013, vol. 99, p. 225.

    Article  CAS  Google Scholar 

  26. Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, p. 879.

    Article  CAS  Google Scholar 

  27. Gu, M., Initial stages of the electrocrystallization of Co-Cu alloys on GCE from the Co rich electrolytes, Electrochim. Acta, 2007, vol. 52, p. 4443.

    Article  CAS  Google Scholar 

  28. Hu, F. and Chan, K.C., Equivalent circuit modelling of Ni-SiC electrodeposition under ramp-up and ramp-down waveforms, Mater. Chem. Phys., 2006, vol. 99, p. 424.

    Article  CAS  Google Scholar 

  29. Pasquale, M.A., Gassa, L.M., and Arvia, A.J., Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives, Electrochim. Acta, 2008, vol. 53, p. 5891.

    Article  CAS  Google Scholar 

  30. Aaboubi, O., Douglade, J., Abenaqui, X., Boumedmed, R., and Vonhoff, J., Influence of tartaric acid on zinc electrodeposition from sulphate bath, Electrochim. Acta, 2011, vol. 56, p. 7885.

    Article  CAS  Google Scholar 

  31. Shmychkova, O., Lukyanenko, T., Velichenko, A., Meda, L., and Amadelli, R., Bi-doped PbO2 anodes: electrodeposition and physico-chemical properties, Electrochim. Acta, 2013, vol. 111, p. 332.

    Article  CAS  Google Scholar 

  32. Shmychkova, O., Lukyanenko, T., Amadelli, R., and Velichenko, A., Electrodeposition of Ce-doped PbO2. J. Electroanal. Chem., 2013, vol. 706, p. 86.

    Article  CAS  Google Scholar 

  33. Velichenko, A.B., Baranova, E.A., Girenko, D.V., Amadelli, R., Kovalev, S.V., and Danilov, F.I., Mechanism of electrodeposition of lead dioxide from nitrate solutions, Russ. J. Electrochem., 2003, vol. 39, p. 615.

    Article  CAS  Google Scholar 

  34. Velichenko, A.B. and Devilliers, D., Electrodeposition of fluorine-doped lead dioxide, J. Fluorine Chem., 2007, vol. 128, p. 269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingwu Yao or Feng Wei.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 529–534.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Huang, C., Dong, H. et al. Influence of Manganese Ions on the Electrodeposition Process of Lead Dioxide in Lead Nitrate Solution. Russ J Electrochem 55, 364–369 (2019). https://doi.org/10.1134/S1023193519040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519040049

Keywords

Navigation