Skip to main content
Log in

Efficiency of Pyrrole Electropolymerization under Various Conditions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrooxidative polymerization of pyrrole on the surface of a glassy carbon electrode was studied, while varying the solvent, the type and concentration of supporting electrolyte, redox mediator addition to the polymerization medium, and hydrodynamic conditions. The efficiency of polymerization was determined as the ratio of the charge of the redox response of the polymer film under the standard conditions to the total charge of film formation in the monomer solution. The above factors were varied to determine the conditions that allow minimization of the ratio in order to obtain the highest yield of the polymer product. This was achieved by using a combination of a redox mediator addition with active stirring of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malev, V.V., Kondratiev, V.V., and Timonov, A.M., Polimer-modifitsirovannye elektrody (Polymer-Modified Electrodes), St. Petersburg: Nestor-History, 2012.

    Google Scholar 

  2. Skotheim, T.A. and Reynolds, J.R., Handbook of Conducting Polymers, Boca Raton: CRC Press, 2007, p. 1693.

    Google Scholar 

  3. Heinze, J., Electronically conducting polymers, in Topics in Current Chemistry, Steckhan, E., Ed., Berlin: Springer-Verlag Berlin Heidelberg, 1990, p. 1.

    Google Scholar 

  4. Vorotyntsev, M.A. and Vasilyeva, S.V., Metallocenecontaining conjugated polymers, Adv. Colloid Interface Sci., 2008, vol. 139, no. 1, p. 97.

    Article  CAS  PubMed  Google Scholar 

  5. Vorotyntsev, M.A., Zinovyeva, V.A., and Konev, D.V., Mechanisms of Electropolymerization and Redox Activity: Fundamental Aspects, in: Electropolymerization: Concepts, Materials and Applications, Cosnier, S. and Karyakin, A.A., Eds., Weinheim: WileyVCH, 2010, p. 27–50.

    Google Scholar 

  6. Podlovchenko, B.I. and Andreev, V.N., Electrocatalysis on polymer-modified electrodes, Russ. Chem. Rev., 2002, vol. 71, no. 10, p. 837.

    Article  CAS  Google Scholar 

  7. Machida, S., Miyata, S., and Techagumpuch, A., Chemical synthesis of highly electrically conductive polypyrrole, Synth. Met., 1989, vol. 31, no. 3, p. 311.

    Article  CAS  Google Scholar 

  8. Kang, E.T., Neoh, K.G., Ong, Y.K., Tan, K.L., and Tan, B.T.G., X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative iron(III) salts, Macromolecules, 1991, vol. 24, no. 10, p. 2822.

    Article  CAS  Google Scholar 

  9. Saafan, S.A., El-Nimr, M.K., and El-Ghazzawy, E.H., Study of dielectric properties of polypyrrole prepared using two different oxidizing agents, J. Appl. Polym. Sci., 2006, vol. 99, no. 6, p. 3370.

    Article  CAS  Google Scholar 

  10. Morita, M., Komaguchi, K., Tsutsumi, H., and Matsuda, Y., Electrosynthesis of poly(p-phenylene) films and their application to the electrodes of rechargeable batteries, Electrochim. Acta, 1992, vol. 37, no. 6, p. 1093.

    Article  CAS  Google Scholar 

  11. Yonezawa, S., Kanamura, K., and Takehara, Z., Discharge and charge characteristics of polyaniline prepared by electropolymerization of aniline in nonaqueous solvent, J. Electrochem. Soc., 1993, vol. 140, no. 3, p. 629.

    Article  CAS  Google Scholar 

  12. Nazarova, I.B., Krinichnyi, V.I., and Goldenberg, L.M., Schottky diodes based on poly(p-phenylene) and poly(1,4-dipyrrolobenzene), Synth. Met., 1993, vol. 53, no. 3, p. 399.

    Article  CAS  Google Scholar 

  13. McCoy, C.H. and Wrighton, M.S., Potential-dependent conductivity of conducting polymers yields opportunities for molecule-based devices: a microelectrochemical push-pull amplifier based on two different conducting polymer transistors, Chem. Mater., 1993, vol. 5, no. 7, p. 914.

    Article  CAS  Google Scholar 

  14. Morita, M. and Hashida, I., Enhanced electrochromic stability of polyaniline in polyaniline-matrix polymer composite films in aprotic medium, Macromol. Chem. Phys., 1992, vol. 193, no. 4, p. 921.

    Article  CAS  Google Scholar 

  15. Morita, M., Multicolor electrochromic behavior of polyaniline composite films combined with polythiophene and poly(3-methylthiophene) films, Macromol. Chem. Phys., 1993, vol. 194, no. 8, p. 2361.

    Article  CAS  Google Scholar 

  16. Genies, E.M. and Marchesiello, M., Conducting polymers for biosensors, application to new glucose sensors GOD entrapped into polypyrrole, GOD adsorbed on poly(3-methylthiophene), Synth. Met., 1993, vol. 57, no. 1, p. 3677.

    Article  CAS  Google Scholar 

  17. Nishizawa, M., Miwa, Y., Matsue, T., and Uchida, I., Surface pretreatment for electrochemical fabrication of ultrathin patterned conducting polymers, J. Electrochem. Soc., 1993, vol. 140, no. 6, p. 1650.

    Article  CAS  Google Scholar 

  18. Girard, F., Ye, S., Laperriere, G., and Belanger, D., Polypyrrole film electrodes electrochemically doped with tetrathiomolybdate anions: preparation and characterization, J. Electroanal. Chem., 1992, vol. 334, nos. 1–2, p. 35.

    CAS  Google Scholar 

  19. Miller, J.S., Conducting polymers—materials of commerce, Adv. Mater., 1993, vol. 5, no. 9, p. 671.

    Article  Google Scholar 

  20. Medvedeva, T.O. and Istakova, O.I., The influence of electropolymerization conditions on the preparation of polypyrrole in powder form, Tez. dokl. mezhdunar. molodezhnogo nauchnogo foruma “Lomonosov-2018” (Abstracts of Papers, Int. Scientific Conf. of Students and Young Scientists “Lomonosov-2018”), Moscow: MAKS Press, 2018, https://lomonosov-msu.ru/archive/Lomonosov_2018/data/section_12_13672.htm

    Google Scholar 

  21. Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Electrochemistry of conducting polymers: persistent models and new concepts, Chem. Rev., 2010, vol. 110, no. 8, p. 4724.

    Article  CAS  PubMed  Google Scholar 

  22. Gvozdenović, M.M., Jugović, B.Z., Stevanović, J.S., and Grgur, B.N., Electrochemical synthesis of electroconducting polymers, Hem. Ind., 2014, vol. 68, no. 6, p. 673.

    Article  Google Scholar 

  23. Müllen, K. and Wegner, G., Electronic materials: the oligomer approach, Verlag: WILEY-VCH, 2008.

    Google Scholar 

  24. Zhou, M. and Heinze, J., Electropolymerization of pyrrole and electrochemical study of polypyrrole. 2. Influence of acidity on the formation of polypyrrole and the multipathway mechanism, J. Phys. Chem. B, 1999, vol. 103, no. 40, p. 8443.

    Article  CAS  Google Scholar 

  25. Meerholz, K. and Heinze, J., Influence of chain length and defects on the electrical conductivity of conducting polymers, Synth. Met., 1993, vol. 57, nos. 2–3, p. 5040.

    Article  CAS  Google Scholar 

  26. Bof Bufon, C.C., Vollmer, J., Heinzel, T., Espindola, P., John, H., and Heinze, J., Relationship between chain length, disorder, and resistivity in polypyrrole films, J. Phys. Chem. B., 2005, vol. 109, no. 41, p. 19191.

    CAS  Google Scholar 

  27. Otero, T.F. and Boyano, I., Comparative study of conducting polymers by the ESCR model, J. Phys. Chem. B., 2003, vol. 107, no. 28, p. 6730.

    Article  CAS  Google Scholar 

  28. Otero, T.F. and De Larreta, E., Electrochemical control of the morphology, adherence, appearance and growth of polypyrrole films, Synth. Met., 1988, vol. 26, no. 1, p. 79.

    Article  CAS  Google Scholar 

  29. Diaz, A.F., Castillo, J.I., Logan, J.A., and Lee, W.Y., Electrochemistry of conducting polypyrrole films, J. Electroanal. Chem. Interfac. Electrochem., 1981, vol. 129, nos. 1–2, p. 115.

    Article  CAS  Google Scholar 

  30. Asavapiriyanont, S., Chandler, G.K., Gunawardena, G.A., and Plletcher, D., The electrodeposition of polypyrrole films from aqueous solutions, J. Electroanal. Chem. Interfac. Electrochem., 1984, vol. 177, nos. 1–2, p. 229.

    Article  CAS  Google Scholar 

  31. Scharifker, B.R., Garcia-Pastoriza, E., and Marino, W., The growth of polypyrrole films on electrodes, J. Electroanal. Chem. Interfac. Electrochem., 1991, vol. 300, nos. 1–2, p. 85.

    Article  CAS  Google Scholar 

  32. Yamaura, M., Sato, K., and Hagiwara, T., Effect of counter-anion exchange on electrical conductivity of polypyrrole films, Synth. Met., 1991, vol. 41, nos. 1–2, p. 439.

    CAS  Google Scholar 

  33. Vernitskaya, T.V. and Efimov, O.N., Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russ. Chem. Rev., 1997, vol. 66, no. 5, p. 443.

    Article  Google Scholar 

  34. Zhou, M. and Heinze, J., Electropolymerization of Pyrrole and Electrochemical Study of Polypyrrole. 3. Nature of “Water Effect” in Acetonitrile, J. Phys. Chem. B., 1999, vol. 103, no. 40, p. 8451.

    Article  CAS  Google Scholar 

  35. Beck, F. and Oberst, M., Electrocatalytic deposition of polypyrrole in the presence of bromide, J. Appl. Electrochem., 1992, vol. 22, no. 4, p. 332.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Istakova.

Additional information

Original Russian Text © O.I. Istakova, D.V. Konev, T.O. Medvedeva, E.V. Zolotukhina, M.A. Vorotyntsev, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 1, pp. 85–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istakova, O.I., Konev, D.V., Medvedeva, T.O. et al. Efficiency of Pyrrole Electropolymerization under Various Conditions. Russ J Electrochem 54, 1243–1251 (2018). https://doi.org/10.1134/S1023193518130190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130190

Keywords

Navigation