Skip to main content
Log in

Thin Layer Multicycle Cathodic-Anodic Chronoamperometry of Atomic Hydrogen Injection–Extraction into Metals with Regard to the Stage of Phase Boundary Exchange

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The method of potentiostatic anodic-cathodic chronoamperometry of atomic hydrogen injection into a metal film and its subsequent extraction is theoretically discussed. By combining the methods for studying the phase-structure state and surface morphology with multicycle cathodic-anodic chronoamperometry, the injection (and subsequent extraction) of atomic hydrogen into a 47Pd53Cu (at %) film synthesized by ion-plasma spraying is studied. It is found that the initial stage of hydrogenation proceeds under the mixed diffusion-phase-boundary control and passes to the purely diffusion control in 3–4 s. The main kinetic parameters of the stages of phase-boundary hydrogen penetration and its solid-phase diffusion are found. It is shown that the mass transfer in the film alloy proceeds mainly through the grain bodies rather than along intergrain boundaries. The increase in the β-phase content in the alloy leads to the noticeable increase in the diffusion coefficient of hydrogen, whereas the effective equilibrium constant of the phase-boundary process decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geld, P.V, Ryabov, R.A, and Mohracheva, L.P., Vodorod i fizicheskie svoistva metallov i splavov, (Hydrogen and Physical Properties of Metals and Alloys), Moscow: Nauka, 1985.

    Google Scholar 

  2. Ageev, V.N., Beckman, I.N., Burmistrova, O.P. et al., in Vzaimodeistvie vodoroda s metallami (Interaction of Hydrogen with Metals), Zakharov, A.P., Ed., Moscow: Nauka, 1987.

  3. Zakharov, A.P., Zakharov, A.P., and Ageev, V.N., in Vzaimodeistvie vodoroda s metallami (Interaction of Hydrogen with Metals), Zakharov, A.P., Ed., Moscow: Nauka, 1987.

  4. Ievlev, V.M., Maksimenko, A.A., Belonogov, E.K., Dontsov, A.I., Gorina, N.B., and Roshan, N.R., The hydrogen permeability of thick films of Pd–Cu solid solution, Perspect. Mater., 2008, no. 6, p. 216.]

    Google Scholar 

  5. Ievlev, V.M., Burkhanov, G.S., Roshan, N.R., Belonogov, E.K., Maksimenko, A.A., Dontsov, A.I., and Rudakov, K.E., Structure, mechanical properties and hydrogen permeability of membrane foils of Pd–Cu and Pd–Ru alloys, obtained by magnetron sputtering, Russ. Metall., 2012, no. 6, p. 92.

    Google Scholar 

  6. Hydrogen in Metals, Vol. 1, Alefeld, G. and Völkl, J., Eds., Berlin: Springer, 1978.

    Google Scholar 

  7. Gabrielli, C., Grand, P.P., Lasia, A., and Perrot, H., Investigation of hydrogen adsorption-absorption into thin palladium films. I. Theory, J. Electrochem. Soc., 2004, vol. 151, p. A1925.

    Google Scholar 

  8. Tarek, A.K. and Heuser, B.J., Estimates of trapping of hydrogen at dislocations in Pd: Suggestions for future SANS experiments, Scr. Metall. Mater., 1995, vol. 32, p. 1619.

    Article  Google Scholar 

  9. Heuser, B.J. and King, J.S., SANS measurements of deuterium-dislocation trapping in deformed single Pd, J. Alloys Compd., 1997, vol. 261, p. 225.

    Article  CAS  Google Scholar 

  10. Myers, S.M., Baskes, M.I., Birnbaum, H.K., Corbett, J.W., DeLeo, G.G., Estreicher, S.K., Haller, E.E., Jena, P., Johnson, N.M., Kirchheim, R., Pearton, S.J., and Stavola, M.J., Hydrogen interaction in crystalline solids, Rev. Mod. Phys., 1992, vol. 64, p. 559.

    Article  CAS  Google Scholar 

  11. Goldbach, A., Yuan, L., and Xu, H., Impact of the fcc/bcc phase transition on the homogeneity and behavior of PdCu membranes, Sep. Purif. Technol., 2010, no. 73, p. 65.

    Article  CAS  Google Scholar 

  12. Ievlev, V.M., Belonogov, E.K., Maksimenko, A.A., Burkhanov, G.S., Roshan, N.R., and Shkatov, V.V., Structure and substructure of films of an ordered palladium-copper solid solution, Vestn. VGTU, Ser. Materialovedenie, 2005, no. 1.17, p. 9.

    Google Scholar 

  13. Ievlev, V.M., Solntsev, K.A., Maksimenko, A.A., Kannykin, S.V., Belonogov, E.K., Dontsov, A.I., and Roshan, N.R., Formation of thin foil of the ordered Pd–Cu solid solution with a CsCl-type lattice during magnetron sputtering, Dokl. Akad. Nauk., 2014, vol. 457, no. 4–6, p.127.

    CAS  Google Scholar 

  14. Vert, Zh.L. and Tverdovsky I.P., Dissolution and adsorption of hydrogen by disperse palladium-silver alloys, Zh. Fiz. Khim., 1953, vol. 28, p. 317.

    Google Scholar 

  15. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., The phase-boundary exchange and the non-steadystate diffusion of atomic hydrogen in Cu–Pd and Ag–Pd alloys. Part I. Analysis of the model, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 699.

    Article  CAS  Google Scholar 

  16. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., The phase-boundary exchange and the non-steadystate diffusion of atomic hydrogen in Cu–Pd and Ag–Pd alloys. Part II. Experimental data, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 72.

    Article  CAS  Google Scholar 

  17. Sirota, D.S. and Pchelnikov, A.P., Anodic behavior of hydrogenated nickel in sodium hydroxide solutions, Prot. Met., 2004, vol. 40, p. 41.

    Article  CAS  Google Scholar 

  18. Maleeva, M.A., Rybkina, A.A., Marshakov, A.I., and Elkin, V.V., The effect of atomic hydrogen on the anodic dissolution of iron in a sulfate electrolyte studied with impedance spectroscopy, Prot. Met. Phys. Chem. Surf., 2008, vol. 44, p. 548.

    CAS  Google Scholar 

  19. Tsygankova, L.E., Protasov, A.S., Balybin, D.V., and Makolskaya, N.A., Determination of the true constants of the hydrogen evolution and its solid-phase diffusion under adsorption conditions of the inhibitor, Korroz.: Mater. Zashch., 2009, no. 10, p. 34.

    Google Scholar 

  20. Vigdorovich, V.I., Tsygankova, L.E., and Kopylova, E.Yu., Effect of sodium hydroarsenate on the kinetics of reduction of hydrogen ions at iron and on the hydrogen diffusion through a steel membrane from aqueous and ethylene glycol solutions of hydrochloric acid, Russ. J. Electrochem., 2003, vol. 39, p. 753.

    Article  CAS  Google Scholar 

  21. Morozova, N.B. and Vvedenskii, A.V., Phase-boundary exchange and nonstationary diffusion of atomic hydrogen in a metal film. I. Analysis of the current transient, Kondens. Sredy Mezhfaznye Granitsy, 2015, vol. 17, p. 451.

    CAS  Google Scholar 

  22. Diagrammy sostoyaniya dvoinykh metallichskikh sistem: Spravochnik (Phase Diagrams of Double Metal Systems; Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997.

    Google Scholar 

  23. Vvedenskii, A.V., Gutorov, I.A., and Morozova, N.B., Kinetics of cathodic hydrogen evolution on transition metals. II Experimental data, Kondens. Sredy Mezhfaznye Granitsy, 2010, vol. 12, p. 337.

    CAS  Google Scholar 

  24. Vvedenskii, A.V., Kinetics of hydrogen evolution on a number of metals IB and VIIIB subgroups of the periodic system. Part I, Korroz.: Mater. Zashch., 2011, no. 11, p. 23.

    Google Scholar 

  25. Kozaderov, O.A. and Vvedenskii, A.V., Massoperenos i fazoobrazovanie pri anodnom selektivnom rastvorenii gomogennykh splavov (Mass Transfer and Phase Formation during Anodic Selective Dissolution of Homogeneous Alloys), Voronezh: Nauchnaya kniga, 2014.

    Google Scholar 

  26. Rietveld, H.M., The Rietveld method: A retrospection, Z. Kristallogr., 2010, vol. 225, p. 545.

    Article  CAS  Google Scholar 

  27. Petricek, V., Dusek, M., and Palatinus, L., Crystallographic computing system JANA2006: General features, Z. Kristallogr., 2014, vol. 229, p. 345.

    CAS  Google Scholar 

  28. Avdyukhina, V.M., Revkevich, G.P., Nazmutdinov, A.Z., Burkhanov, G.S., Roshan, N.R., and Kolchugina, N.B., X-ray, synchrotron and neutron studies, Poverhnost, 2007, no. 10, p. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vvedenskii.

Additional information

Original Russian Text © N.B. Morozova, A.V. Vvedenskii, A.A. Maksimenko, A.I. Dontsov, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 4, pp. 395–407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, N.B., Vvedenskii, A.V., Maksimenko, A.A. et al. Thin Layer Multicycle Cathodic-Anodic Chronoamperometry of Atomic Hydrogen Injection–Extraction into Metals with Regard to the Stage of Phase Boundary Exchange. Russ J Electrochem 54, 344–354 (2018). https://doi.org/10.1134/S1023193518040067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518040067

Keywords

Navigation