Skip to main content
Log in

A Simple Dynamic Diffusion Model of the Response of Highly Selective Electrodes: The Effect of Simulation Parameters and Boundary Conditions on the Results of Calculations

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

For a tetrabutylammonium-selective electrode with a ion-exchange membrane, in the real-work scenario corresponding to the determination of selectivity coefficients by the IUPAC-recommended method of separate solutions, it is shown that of the results of calculations obtained within the framework of the dynamic diffusion model based on the use of the finite-difference technique substantially depend on of the chosen boundary conditions and the values of arbitrarily set simulation parameters. The key parameter that determines the quality of simulation results is the thickness of the elementary layer in the membrane phase, especially for low diffusion coefficients. It is found that the use of thin elementary layers in membranes and thick elementary layers in the aqueous phase makes it possible to combine the high quality with the high calculation rate. In simulating the long-term experiments, account should be taken of the accumulation of the potential-determining ion in the aqueous solution volume as a result of its displacement by a foreign ion from the membrane. A good correspondence between calculation data and experimental results is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokalski, T., Ceresa, A., Zwickl, T., and Pretsch, E., Large improvement of the lower detection limit of ionselective polymer membrane electrodes, J. Amer. Chem. Soc., 1997, vol. 119, p. 11347.

    Article  CAS  Google Scholar 

  2. Sokalski, T., Zwickl, T., Bakker, E., and Pretch, E., Lowering the detection limit of solvent polymeric ionselective electrodes. 1. Modeling the influence of steady-state ion fluxes, Anal. Chem., 1999, vol. 71, p. 1204.

    Article  CAS  Google Scholar 

  3. Bakker, E., Generalized selectivity description for polymeric ion-selective electrodes based on the phase boundary potential model, J. Electroanal. Chem., 2010, vol. 639, p. 1.

    Article  CAS  Google Scholar 

  4. Fibbioli, M., Morf, W.E., Badertscher, M., de Rooij, N.F., and Pretsch, E., Potential drifts of solid-contacted ionselective electrodes due to zero-current ion fluxes through the sensor membrane, Electroanalysis, 2000, vol. 12, no. 16, p. 1286.

    Article  CAS  Google Scholar 

  5. Morf, W.E., Badertscher, M., Zwickl, T., Reichmuth, P., de Rooij, N.F., and Pretch, E., Calculated effects of membrane transport on the long-term response behavior of polymeric membrane ion-selective electrodes, J. Phys. Chem. B, 2000, vol. 104, p. 8201.

    Article  CAS  Google Scholar 

  6. Zwickl, T., Sokalski, T., and Pretsch, E., Steady-state model calculations predicting the influence of key parameters on the lower detection limit and ruggedness of solvent polymeric membrane ion-selective electrodes, Electroanalysis, 1999, vol. 11, no. 10–11, p. 673.

    Article  CAS  Google Scholar 

  7. Morf, W.E., Badertscher, M., Zwickl, T., de Rooij, N.F., and Pretsch, E., Effects of ion transport on the potential response of ionophore-based membrane electrodes: a theoretical approach, J. Phys. Chem. B., 1999, vol. 103, p. 11346.

    Article  CAS  Google Scholar 

  8. Radu, A., Meir, A.J., and Bakker, E., Dynamic diffusion model for tracing the real-time potential response of polymeric membrane ion-selective electrodes, Anal. Chem., 2004, vol. 76, p. 6402.

    Article  CAS  Google Scholar 

  9. Sokalski, T. and Lewenstam, A., Application of Nernst-Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in realtime and space domains, Electrochem. Commun., 2001, vol. 3, no. 3, p. 107.

    Article  CAS  Google Scholar 

  10. Morf, W.E., Pretsch, E., and de Rooij, N.F., Theory and computer simulation of the time-dependent selectivity behavior of polymeric membrane ion-selective electrodes, J. Electroanal. Chem, 2008, vol. 614, p. 15.

    Article  CAS  Google Scholar 

  11. Morf, W.E., Pretsch, E., and de Rooij, N.F., Memory effects of ion-selective electrodes: theory and computer simulation of the time-dependent potential response to multiple sample changes, J. Electroanal. Chem., 2009, vol. 633, p. 137.

    Article  CAS  Google Scholar 

  12. Morf, W.E., The Principles of Ion-Selective Electrodes and of Membrane Transport, New York: Elsevier, 1981, translated into Russian.

    Google Scholar 

  13. Egorov, V.V., Zdrachek, E.A., and Nazarov, V.A., Improved separate solution method for determination of low selectivity coefficients, Anal. Chem., 2014, vol. 86, p. 3693.

    Article  CAS  Google Scholar 

  14. Zdrachek, E.A., Nazarov, V.A., and Egorov, V.V., Generalized diffusion parameter: main factors of influence and application for estimation of selectivity coefficients for highly selective electrodes, Electroanalysis, 2015, vol. 27, p. 693.

    Article  CAS  Google Scholar 

  15. Zdrachek, E.A., Nazarov, V.A., and Egorov, V.V., The method of estimation of diffusion coefficients of ions in membranes of ion-selective electrodes based on potentiometric data, Vestn. BGU: Ser. 2, 2014, no. 1, p. 10.

    Google Scholar 

  16. Morf, W.E., Pretsch, E., and Rooij, N.F., Computer simulation of ion-selective membrane electrodes and related systems by finite-difference procedures, J. Electroanal. Chem., 2007, vol. 602, p. 43.

    Article  CAS  Google Scholar 

  17. Bakker, E., Evaluation of Egorov`s improved separate solution method for determination of low selectivity coefficients by numerical simulation, Anal. Chem., 2014, vol. 86, p. 8021.

    Article  CAS  Google Scholar 

  18. Egorov, V.V. and Bolotin, A.A., Effect of membrane composition on the selectivity of electrodes selective for alkylammonium ions with different degrees of substitution, Russ. J. Anal. Chem., 2006, vol. 61, no. 3, p. 279.

    Article  CAS  Google Scholar 

  19. Buck, R.P. and Lindner, E., Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem., 1994, vol. 66, no. 12, p. 2527.

    Article  CAS  Google Scholar 

  20. Macca, C., The current usage of selectivity coefficients for the characterization of ion-selective electrodes. A critical survey of the 2000/2001 literature, Electroanalysis, 2003, vol. 15, p. 997.

    Article  CAS  Google Scholar 

  21. Zdrachek, E.A., The effect of diffusion processes on the performance of film ion-selective electrodes, Cand. Sci. (Chem.) Dissertation, Minsk: BGU, 2015.

    Google Scholar 

  22. Crank, J., The Mathematics of Diffusion, London: Oxford Univ., 1975.

    Google Scholar 

  23. Bakker, E., Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes, Anal. Chem., 1997, vol. 69, p. 1061.

    Article  CAS  Google Scholar 

  24. Kisiel, A., Woznica, E., Wojciechowski, M., Bulska, E., Maksymiuk, K., and Michalska, A., Potentiometric layered membranes, Sens. Actuators B., 2015, vol. 207, p. 995.

    Article  CAS  Google Scholar 

  25. Jasielec, J.J., Sokalski, T., Filipek, R., and Lewenstam, A., Comparison of different approaches to the description of the detection limit of ion-selective electrodes, Electrochim. Acta, 2010, vol. 55, p. 6836.

    Article  CAS  Google Scholar 

  26. Wolfram Research Inc., 100 Trade Center Drive, Champaign, IL 61820-7237. www.wolfram.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Egorov.

Additional information

Original Russian Text © V.V. Egorov, A.D. Novakovskii, E.A. Zdrachek, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 4, pp. 437–447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, V.V., Novakovskii, A.D. & Zdrachek, E.A. A Simple Dynamic Diffusion Model of the Response of Highly Selective Electrodes: The Effect of Simulation Parameters and Boundary Conditions on the Results of Calculations. Russ J Electrochem 54, 381–390 (2018). https://doi.org/10.1134/S1023193518040031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518040031

Keywords

Navigation