Skip to main content
Log in

Anodic Synthesis of New Benzofuran Derivatives Using Active Methylene Group at Platinum Electrode

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A facile and Eco-compatible synthesis of benzofuran derivatives (4a–4h) has been carried out at platinum electrode by electrochemical oxidation of catechol in the presence of active methylene groups. Electro- organic synthesis has been performed in an undivided cell at ambient conditions. The products of electrolysis have been purified and characterized by FTIR, 1H NMR and 13C NMR and mechanism was deduced by voltammetric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lo, Y.C., Liu, Y., and Burka, L.T., A model for catecholcontaining antioxidants neuronal effects of 4-t-butylcatechol, Toxicol. Appl. Pharmacol., 2008, vol. 228, p. 247.

    Article  CAS  Google Scholar 

  2. Rao, C.V., Desai, D., and Reddy, B.S., Chemoprevention of colon carcinogenesis by phenylethyl-3-methylcaffeate, Cancer Res., 1995, vol. 55, p. 2310.

    CAS  Google Scholar 

  3. Nomura, M., Kaji, A., Miyamoto, W., and Ma, K., Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester, Mol. Carcinog., 2001, vol. 31, p. 83.

    Article  CAS  Google Scholar 

  4. Kubo, I., Xiao, P., and Fujita, K., Antifungal activity of octyl gallate: Structural criteria and mode of action, Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 347.

    Article  CAS  Google Scholar 

  5. Fung-Tomc, J., Bush, K., and Bonner, R.E.D., Antibacterial activity of BMS-180680, a new catechol-containing monobactam, Antimicrob, Agents Chemother., 1997, vol. 41, p. 1010.

    CAS  Google Scholar 

  6. Wang, W.L., Chai, S.C., and Ye, Q.Z., Synthesis and structure-function analysis of Fe(II)-form-selective antibacterial inhibitors of Escherichia coli methionine aminopeptidase, Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 1080.

    Article  CAS  Google Scholar 

  7. King, P.J., Peter, J.P., and Kim, W.E., Structure–activity relationships: Analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication, J. Med. Chem., 1999, vol. 42, p. 497.

    Article  CAS  Google Scholar 

  8. Robinson, W.E., Jr., Reinicke, M.G., and Chow, S.A., Inhibitors of HIV-1 replication that inhibit HIV integrase, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, p. 6326.

    Article  CAS  Google Scholar 

  9. Zhao, X.Z., Semenova, E.A., and Pommier, T.R., Jr., 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one-based HIV-1 integrase inhibitors, J. Med. Chem., 2008, vol. 51, p. 251.

    Article  CAS  Google Scholar 

  10. Schweigert, N., Zehnder, A.J.B., and Eggen, R.I.L., Acid/base and hydrogen bonding effects on the protoncoupled electron transfer of quinones and hydroquinones in acetonitrile: Mechanistic investigation by voltammetry, 1H NMR and computation, Environ. Microbial., 2001, vol. 3, p. 81.

    Article  CAS  Google Scholar 

  11. AMICBASE-ESSOIL Database on Natural Antimicrobials, Germany: Review Science, 1999–2002.

  12. Halabalaki, M., Aligiannis, N., and Skaltsounis, A., Three new arylobenzofurans from Onobrychis ebenoides and evaluation of their binding affinity for the estrogen receptor, J. Nat. Prod., 2000, vol. 63, p.1672.

    Article  CAS  Google Scholar 

  13. Angerer, E., von Biberger, C., and Leitchtl, S., Studies on heterocyde-based pure estrogen antagonists, Ann. N.Y. Acad. Sci., 1995, vol. 761, p. 176.

    Article  Google Scholar 

  14. Teo, C.C., Kon, O.L., and Sim, K.Y., Synthesis of 2-(p-chlorobenzyl)-3-aryl-6-methoxybenzofurans as selective ligands for antiestrogen-binding sites. Effects on cell proliferation and cholesterol synthesis, J. Med. Chem., 1992, vol. 35, p. 1330.

    Article  CAS  Google Scholar 

  15. Gesser, G.A., Faghih, R., and Cowart, M.D., Structure–activity relationships of arylbenzofuran H3 receptor antagonists, Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 2559.

    Article  Google Scholar 

  16. Cowart, M., Pratt, J.K., and Hancock, A.A., A new class of potent non-imidazole H3 antagonists: 2-aminoethylbenzofurans, Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 689.

    Article  CAS  Google Scholar 

  17. Hocke, C., Prante, O., and Kuwert, T., Synthesis and radioiodination of selective ligands for the dopamine D3 receptor subtype, Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 3963.

    Article  CAS  Google Scholar 

  18. Hu, Y., Xiang, J.S., and Levin, L.I., Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis, Bioorg. Med. Chem., 2005, vol. 13, p. 6629.

    Article  CAS  Google Scholar 

  19. Ramirez, F. and Dershowitz, S., The structure of quinone-donor adducts, I. The action of triphenylphosphine on p-benzoquinone, 2,5-dichloro-p-benzoquinone and chloranil, J. Am. Chem. Soc., 1956, vol. 78, p. 5614.

    Article  CAS  Google Scholar 

  20. Nematollahi, D. and Rafiee, M., Diversity in electrochemical oxidation of dihydroxybenzoic acids in the presence of acetylacetone. A green method for synthesis of new benzofuran derivatives, Green Chem., 2005, vol. 7, p. 638.

    Article  CAS  Google Scholar 

  21. Maleki, A. and Nematollahi, D., An efficient electrochemical method for the synthesis of methylene blue, Electrochem. Commun., 2009, vol. 11, p. 2261.

    Article  CAS  Google Scholar 

  22. Steckhan, E., Arns, T., and Putter, H., Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses, Chemosphere, 2001, vol. 43, p. 63.

    Article  CAS  Google Scholar 

  23. Asami, R., Atobe, M., and Fuchigami, T., Electropolymerization of an immiscible monomer in aqueous electrolytes using acoustic emulsification, J. Am. Chem. Soc., 2005, vol. 127, p. 13160.

    Article  CAS  Google Scholar 

  24. Fry, J., Synthetic Organic Electrochemistry, New York: Wiley, 1989.

    Google Scholar 

  25. Sharma, L.K., Singh, S., and Singh, R.K.P., A Novel and facile environmentally benign oxidative electrocyclization of acylthiosemicarbazone into biodynamic 1,3,4-oxadiazoles, J. Indian Chem. Soc., 2011, vol. 88, p. 155.

    CAS  Google Scholar 

  26. Sharma, L.K., Singh, S., and Singh, R.K.P., Green synthesis of 2-amino-5-substituted-1,3,4-oxadiazoles at the platinum anode in acetic acid, Indian J. Chem. B, 2011, vol. 50, p. 110.

    Google Scholar 

  27. Sharma, L.K., Kumar, S., and Singh, R.K.P., Electrochemical synthesis of 5-substituted-2-amino (substituted amino)-1,3,4-oxadiazoles at the platinum electrode, Russ. J. Electrochem., 2010, vol. 46, no. 1, p. 37.

    Article  Google Scholar 

  28. Singh, S., Sharma, L.K., and Singh, R.K.P., Electrochemically initiated oxidative cyclization: A versatile route for the synthesis of 5-substituted 2-amino-1,3,4-oxadiazoles, Montash fur Chemie, 2012, vol. 143, p. 1427.

    Article  CAS  Google Scholar 

  29. Chechina, O.N., Electrosynthesis of dihydroperfluoropentanol in a water–ethanol solution, Russ. J. Electrochem., 2015, vol. 51, p. 1119.

    Article  CAS  Google Scholar 

  30. Hartmer, M.F. and Waldvogel, S.R., Electroorganic synthesis of nitriles via a halogen-free domino oxidation–reduction sequence, Chem. Commun., 2015, vol. 51, p. 16346.

    Article  CAS  Google Scholar 

  31. Nematollahi, D., Habibi, D., and Rahmati, M., A facile electrochemical method for synthesisof new benzofuran derivatives, J. Org. Chem., 2004, vol. 69, p. 2637.

    Article  CAS  Google Scholar 

  32. Fakhari, A.R., Nematollahi, D., and Shamsipur, M., Electrochemical synthesis of 5,6-dihydroxy-2-methyl-1-benzofuran-3-carboxylate derivatives, Tetrahedron, 2007, vol. 63, p. 3894.

    Article  CAS  Google Scholar 

  33. Davarani, S.S.H., Nematollahi, D., and Shamsipur, M., Electrochemical oxidation of 2,3-dimethylhydroquinone in the presence of 1,3-dicarbonyl compounds, J. Org. Chem., 2006, vol. 71, p. 2139.

    Article  CAS  Google Scholar 

  34. Nematollahi, D., Alimoradi, M., and WaqifHusain, S., Electrochemical synthesis of new catechol derivatives, Electrochim. Acta, 2006, vol. 51, p. 2620.

    Article  CAS  Google Scholar 

  35. Nematollahi, D., Workington, M.S., and Tammari, E., Electrochemical oxidation of catechol in the presence of cyclopentadiene. Investigation of electrochemically induced Diels–Alder reactions, Chem. Commun., 2006, vol. 15, p. 1631.

    Article  Google Scholar 

  36. Golabi, S.M. and Nematollahi, D.J., Electrochemical study of 3,4-dihydroxybenzoic acid and 4-tert-butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives, Electroanal. Chem., 1997, vol. 430, p. 141.

    Article  CAS  Google Scholar 

  37. Nematollahi, D. and Forooghi, Z., Electrochemical oxidation of catechols in the presence of 4-hydroxy-6- methyl-2-pyrone, Tetrahedron, 2002, vol. 58, p. 4949.

    Article  CAS  Google Scholar 

  38. Golabi, S.M. and Nematollahi, D., Electrochemical study of catechol and some 3-substituted catechols in the presence of 4-hydroxy coumarin: application to the electro-organic synthesis of new coumestan derivatives, J. Electroanal. Chem., 1997, vol. 420, p. 127.

    Article  CAS  Google Scholar 

  39. Nematollahi, D. and Rafiee, M.J., Electrochemical oxidation of catechols in the presence of acetylacetone, Electroanal. Chem., 2004, vol. 566, p. 31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. P. Singh.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 360–367.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, J., Singh, R.K.P., Kala, S. et al. Anodic Synthesis of New Benzofuran Derivatives Using Active Methylene Group at Platinum Electrode. Russ J Electrochem 54, 311–317 (2018). https://doi.org/10.1134/S1023193518030096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030096

Keywords

Navigation