Skip to main content
Log in

Improvement of electrochemical properties of PTMA cathode by using carbon blacks with high specific surface area

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A PTMA (poly(4-methacryloyloxy-2,2,6,6-tetramethyl-piperidine-N-oxyl)) electrode with high energy density is prepared with Black Pearl 2000 (BP-2000). For comparisons, vapor grown carbon fiber (VGCF) and acetylene black (AB) are also employed to fabricate the PTMA-electrodes. The electrochemical properties of the electrode are improved obviously by employing BP-2000. The specific capacity of the PTMA-BP electrode based on the mass of PTMA is 26.7% larger than that of the PTMA-VGCF and PTMA-AB electrodes at a 1 C rate. At higher discharge rates, the polarization degree of the Li/PTMA-BP cell is the minimum one. At a discharge rate of 50 C, the specific capacity of the PTMA-BP electrode is 104.9 mA h g−1, and is 27.6 and 16.7% larger than that of the PTMA-VGCF and PTMA-AB electrodes, respectively. Besides, the discharge plateau of the Li/PTMA-BP cell is 3.35 V, and is 0.03 and 0.13 V higher than that of the Li/PTMA-AB and Li/PTMA-VGCF cells, respectively. The larger specific capacity of BP-2000 and the improved electrochemical kinetics of PTMA at the surface of BP carbon, resulted from the larger surface area of BP-2000, are the main factors for improving the capacity and rate capability of the PTMA-electrode. The high specific surface area of BP-2000 is also beneficial to the thorough contact of PTMA with BP carbon, resulting in the improved conductivity of the PTMA-BP composites. The cycling performance of the PTMA-BP electrode is also satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakahara, K., Iwasa, S., Satoh, M., Morioka, Y., Iriyama, J., Suguro, M., and Hasegawa, E., Chem. Phys. Lett., 2002, vol. 359, p. 351.

    Article  CAS  Google Scholar 

  2. Nishide, H., Iwasa, S., Pu, Y.J., Suga, T., Nakahara, K., and Satoh, M., Electrochim. Acta, 2004, vol. 50, p. 827.

    Article  CAS  Google Scholar 

  3. Nakahara, K., Iriyama, J., Iwasa, S., Suguro, M., Satoh, M., and Cairns, E.J., J. Power Sources, 2007, vol. 165, p. 870.

    Article  CAS  Google Scholar 

  4. Nakahara, K., Iriyama, J., Iwasa, S., Suguro, M., Satoh, M., and Cairns, E.J., J. Power Sources, 2007, vol. 163, p. 1110.

    Article  CAS  Google Scholar 

  5. Nakahara, K., Iriyama, J., Iwasa, S., Suguro, M., Satoh, M., and Cairns, E.J., J. Power Sources, 2007, vol. 165, p. 398.

    Article  CAS  Google Scholar 

  6. López-Peña, H.A., Hernández-Muñoz, L.S., Cardoso, J., González, F.J., González, I., and Frontana, C., Electrochem. Commun., 2009, vol. 11, p. 1369.

    Article  Google Scholar 

  7. Suguro, M., Iwasa, S., Kusachi, Y., Morioka, Y., and Nakahara, K., Macromol. Rapid Commun., 2007, vol. 28, p. 1929.

    Article  CAS  Google Scholar 

  8. Suguro, M., Iwasa, S., and Nakahara, K., Macromol. Rapid Commun., 2008, vol. 29, p. 1635.

    Article  CAS  Google Scholar 

  9. Katsumata, T., Satoh, M., Wada, J., Shiotsuki, M., Sanda, F., and Masuda, T., Macromol. Rapid Commun., 2006, vol. 27, p. 1206.

    Article  CAS  Google Scholar 

  10. Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K., and Nishide, H., Adv. Mater., 2009, vol. 21, p. 1627.

    Article  CAS  Google Scholar 

  11. Suga, T., Konishi, H., and Nishide, H., Chem. Commun., 2007, vol. 17, p. 1730.

    Article  Google Scholar 

  12. Qu, J.Q., Morita, R., Satoh, M., Wada, J., Terakura, F., Mizoguchi, K., Ogata, N., and Masuda, T., Chem. Eur. J., 2008, vol. 14, p. 3250.

    Article  CAS  Google Scholar 

  13. Qu, J.Q., Katsumata, T., Satoh, M., Wada, J., and Masuda, T., Macromolecules, 2007, vol. 40, p. 3136.

    Article  CAS  Google Scholar 

  14. Qu, J.Q., Khan, F.Z., Satoh, M., Wada, J., Hayashi, H., Mizoguchi, K., and Masuda, T., Polymer, 2008, vol. 49, p. 1490.

    Article  CAS  Google Scholar 

  15. Deng, L.F., Li, X.H., Xiao, L.X., and Zhang, Y.H., J. Cent. South Univ. Technol., 2003, vol. 10, p. 190.

    Article  CAS  Google Scholar 

  16. Kim, J.K., Cheruvally, G., Ahn, J.H., Seo, Y.G., Choi, D.S., Lee, S.H., and Song, C.E., J. Ind. Eng. Chem., 2008, vol. 14, p. 371.

    Article  CAS  Google Scholar 

  17. Komaba, S., Tanaka, T., Ozeki, T., Taki, T., Watanabe, H., and Tachikawa, H., J. Power Sources, 2010, vol. 195, p. 6212.

    Article  CAS  Google Scholar 

  18. Gojkovic, S.L. and Vidakovic, T.R., Electrochim. Acta, 2001, vol. 47, p. 633.

    Article  CAS  Google Scholar 

  19. Ma, Z.F., Xie, X.Y., Ma, X.X., Zhang, D.Y., Ren, Q.Z., Heß-Mohr, N., and Schmidt, V.M., Electrochem. Commun., 2006, vol. 8, p. 389.

    Article  CAS  Google Scholar 

  20. Wang, G.X., Sun, G.Q., Zhou, Z.H., Liu, J.G., Wang, Q., Wang, S.L., Guo, J.S., Yang, S.H., Xin, Q., and Yi, B.L., Electrochem. Solid-State Lett., 2005, vol. 8, p. A12.

    Article  CAS  Google Scholar 

  21. Wu, C.Y., Wu, P.W., and Lin, P., J. Power Sources, 2010, vol. 195, p. 5122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chen.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 11, pp. 1155–1160.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.M., Chen, J., Wang, F.Q. et al. Improvement of electrochemical properties of PTMA cathode by using carbon blacks with high specific surface area. Russ J Electrochem 48, 1052–1057 (2012). https://doi.org/10.1134/S1023193512110110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512110110

Keywords

Navigation