Skip to main content
Log in

Mechanism of oxygen poisoning of ammonia synthesis catalyst

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of oxygen adsorbed on the surface of a commercial catalyst from a mixture of hydrogen with water vapor on the steady-state and nonsteady-state ammonia synthesis kinetics is studied under gradientless conditions at the pressures of the stoichiometric nitrogen-hydrogen mixture below the atmospheric pressure and at the temperatures of 285 and 240°C. The results obtained are discussed on the basis of the concepts of the ammonia synthesis theory of Temkin. The poisoning effect of oxygen on the reaction rate is explained by an increase in the activation energy of the rate constant k + in the Temkin-Pyzhev equation, i.e., an increase in the activation energy of the rate constant of nitrogen adsorption at the fixed nitrogen adsorption heat. This conclusion agrees with the concepts of Ertl et al., according to which the activation energy of nitrogen adsorption on iron changes in symbasis with the variation of the electronic work function. Oxygen adsorption on the catalyst surface increases the electronic work function. Thus, the mechanism of the catalyst poisoning by oxygen (at its low surface coverage) consists in an increase in the electronic work function. Assumptions are stated as to the role of chemical promoters of iron catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temkin, M.I. and Pyzhev, V.L., Zh. Fiz. Khim., 1993, vol. 13, p. 851.

    Google Scholar 

  2. Temkin, M.I., Morozov, N.M., and Shapatina, E.N., Kinet. Katal., 1963, vol. 4, p. 260.

    CAS  Google Scholar 

  3. Temkin, M.I., Morozov, N.M., and Shapatina, E.N., Kinet. Katal., 1963, vol. 4, p. 565.

    CAS  Google Scholar 

  4. Temkin, M.I., Adv. Catalysis, 1979, vol. 28, p. 173.

    Article  CAS  Google Scholar 

  5. Temkin, M.I., Khimicheskaya Promyshlennost’, 1990, no. 5, p. 292.

  6. Kuchaev, V.L., Shapatina, E.N., and Avetisov, A.K., Kinet. Katal., 1995, vol. 36, p. 726.

    Google Scholar 

  7. Brunauer, S., Love, K.S., and Keenan, R.G., I. Am. Chem. Soc, 1942, vol. 64, p. 751.

    Article  CAS  Google Scholar 

  8. Sholten, J.J.F., Chemisorption of Nitrogen on Iron Catalysts in Connection with Ammonia Synthesis, Amsterdam: Croniger, 1959.

    Google Scholar 

  9. Sholten, J.J.F., Zwietering, P., Konalinka, J.A., and de Boer, J.H., Trans. Faraday Soc., 1995, vol. 55, p. 2166.

    Article  Google Scholar 

  10. Ostrovskii, V.E., Teor. Eksp. Khim., 1989, no. 2, p. 213.

  11. Spiewak, B.E. and Dumesic, I.A., Thermochim. Acta, 1996, vol. 290, p. 43.

    Article  Google Scholar 

  12. Ostrovskii, V.E., Ind. Eng. Chem. Res., 2004, vol. 43, p. 3113.

    Article  CAS  Google Scholar 

  13. Ozaki, A., Taylor, H., and Boudart, M., Proc. R. Soc., London, 1960, Ser. A258, p. 47.

  14. Shapatina, E.N., Kuchaev, V.L., and Temkin, M.I., Kinet. Katal., 1988, vol. 29, p. 603.

    CAS  Google Scholar 

  15. Kuchaev, V.L., Shapatina, E.N., and Temkin, M.I., Kinet. Katal., 1988, vol. 29, p. 610.

    CAS  Google Scholar 

  16. Almquist, I. and Black, C.A., I. Am. Chem. Soc., 1926, vol. 48, p. 2814.

    Article  CAS  Google Scholar 

  17. Kiperman, S.L., Zh. Fiz. Khim., 1954, vol. 28, p. 389.

    CAS  Google Scholar 

  18. Kiperman, S.L., Vvedenie v kinetiku geterogennykh kataliticheskikh reaktsii (Introduction into Kinetics of Heterogeneous Catalytic Reactions), Moscow: Nauka, 1954, p. 93.

    Google Scholar 

  19. Kuchaev, V.L., Shapatina, E.N., Shub, F.S., and Avetisov, A.K., Kinet. Katal., 1998, vol. 39, p. 310 [Kinet. Catal. (Engl. Transl.), vol. 39, p. 289].

    Google Scholar 

  20. Smirnov, I.A., Morozov, N.M., and Temkin, M.I., Dokl. Akad. Nauk SSSR, 1963, vol. 153, p. 386.

    CAS  Google Scholar 

  21. Smirnov, I.A., Morozov, M.I., and Temkin, M.I., Kinet. Katal., 1965, vol. 6, p. 351.

    CAS  Google Scholar 

  22. Boreskova, E.G., Kuchaev, V.L., and Temkin, M.I., Kinet. Katal., 1984, vol. 25, p. 116.

    CAS  Google Scholar 

  23. Pinkava, I., Unit Operation in the Laboratory, Prague: Csc. Akademia, 1970, p. 4.

    Google Scholar 

  24. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986, p. 89.

    Google Scholar 

  25. Shapatina, E.N., Kuchaev, V.L., and Temkin, M.I., Kinet. Katal., 1985, vol. 26, p. 660.

    CAS  Google Scholar 

  26. Kuchaev, V.L., Shapatina, E.N., Zyskin, A.G., and Temkin, M.I., Kinet. Katal., 1991, vol. 32, p. 1098.

    CAS  Google Scholar 

  27. Kuchaev, V.L., Shapatina, E.N., Shub, F.S., and Temkin, M.I., Kinet. Katal., 1991, vol. 32, p. 1107.

    CAS  Google Scholar 

  28. Temkin, M.I., Zh. Fiz. Khim., 1941, vol. 15, p. 296.

    CAS  Google Scholar 

  29. Temkin, M.I. and Kiperman, S.L., Zh. Fiz. Khim., 1947, vol. 21, p. 927.

    CAS  Google Scholar 

  30. Ertl, G., Weiss, M., and Lee, S.B., Chem. Phys. Lett., 1979, vol. 60, p. 391.

    Article  CAS  Google Scholar 

  31. Ertl, G., Catalysis Rev., 1980, vol. 21, p. 201.

    Article  CAS  Google Scholar 

  32. Enikeev, E.Kh., Krylova, A.V., Kuznetsov, L.D., Lachinov, S.S., and Roginskii, S.Z., Dokl. Akad. Nauk SSSR, 1960, vol. 131, p. 1126.

    CAS  Google Scholar 

  33. Enikeev, E.Kh. and Krylova, A.V., Kinet. Katal., 1962, vol. 3, p. 139.

    CAS  Google Scholar 

  34. Smirnov, I.A., Kinet. Katal., 1966, vol. 7, p. 107.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Avetisov.

Additional information

Original Russian Text © V.L. Kuchaev†, E.N. Shapatina, A.K. Avetisov, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 9, pp. 1055–1068.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchaev, V.L., Shapatina, E.N. & Avetisov, A.K. Mechanism of oxygen poisoning of ammonia synthesis catalyst. Russ J Electrochem 45, 983–995 (2009). https://doi.org/10.1134/S1023193509090031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509090031

Key words

Navigation