Skip to main content
Log in

Electrical conductivity of cation-and anion-exchange membranes in ampholyte solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Several laws governing ampholyte transport through ion-exchange membranes are established by a comparative analysis of the concentration dependence of electrical conductivity for homogeneous (CMX, AMX) and heterogeneous (MK-40, MA-41) membranes in NaCl, LysHCl, and NaH2PO4 solutions. The increase in the electrical conductivity of membranes in ampholyte solutions as the solutions become more dilute is explained by the increased fraction of divalent ions of the amino acid (cation-exchange membrane) or from phosphoric acid (anion-exchange membrane) in the membrane as a result of Donnan exclusion of hydrolysis products (hydroxide ions or protons, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nefedova, G.Z., Klimova, Z.G., and Sapozhnikova, G.S., Ionitovye membrany: Granulyaty, Poroshki (katalog) (Ion-Exchange Membranes: Granules and Powders (catalog)), Pashkov, A.B., Ed., Moscow: NIITEKhim, 1977.

    Google Scholar 

  2. NEOSEPTA Ion-Exchange Membranes (catalog), Tokyo: Tokuyama Soda Co. Ltd.

  3. Gurskaya, G.V., Struktury aminokislot (Structure of Amino Acids), Moscow: Nauka, 1966.

    Google Scholar 

  4. Koryta, J., Dvorjak, J., and Bohackova, V., Electrochemistry, London: Methuen, 1970.

    Google Scholar 

  5. Bobreshova, O.V., Faustov, A.S., Chubirko, M.I., Popov, V.I., Aristov, I.V., and Kulintsov, P.I., Lizinodna iz vazhneishikh nezamenimykh aminokislot v obespechenii polnotsennogo pitaniya (Lysine: One of the Most Important Essential Amino Acids in Guaranteeing Optimal Nutrition), Voronezh: Voronezh. Gos. Univ., 2003.

    Google Scholar 

  6. Roques, H., Fondements theoriques du traitment chimique des eaux (Theoretical Fundamentals of the Chemical Treatment of Waters), 2 vols., Paris: Technique et Documentation-Lavoisier, 1990.

    Google Scholar 

  7. Dobosh, D., Elektrokhimicheskie konstanty (Electrochemical Constants), Moscow: Mir, 1980.

    Google Scholar 

  8. Strel’nikova, O.Yu., Bobreshova, O.V., Kulintsov, P.I., and Stepanenko, L.V., Kondensirovannye sredy i mezhfaznye granitsy, 2001, vol. 3, No. 1, p. 92.

    Google Scholar 

  9. Novikova, L.A., Kulintsov, P.I., Bobreshova, O.V., and Bobylkina, O.V., Elektrokhimiya, 2002, vol. 38, p. 1016 [Russ. J. Electrochem. (Engl. Transl.), 2002, vol. 38, pp. 909–912].

    Google Scholar 

  10. Belaid, N.N., Dammak, L., Ngom, B., Larchet, C., and Auclair, B., Eur. Polym. J., 1998, vol. 34, p. 564.

    Google Scholar 

  11. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2001.

    Google Scholar 

  12. Zabolotskii, V.I., and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  13. Berezina, N.P., Gnusin, N.P., Demina, O.A., and Timofeev, S., J. Membr. Sci., 1994, vol. 86, p. 207.

    Article  CAS  Google Scholar 

  14. Zabolotsky, V.I. and Nikonenko, V.V., J. Membr. Sci., 1993, vol. 79, p. 181.

    Article  CAS  Google Scholar 

  15. Kotova, D.L. and Selemenev, V.F., Termicheskii analiz ionoobmennykh materialov (Thermal Analysis of Ion-Exchange Materials), Moscow: Nauka, 2002.

    Google Scholar 

  16. Mamaeva, O.Yu., Kulintsov, P.I., and Bobreshova, O.V., Elektrokhimiya, 2000, vol. 36, p. 1504 [Russ. J. Electrochem. (Engl. Transl.), 2000, vol. 36, pp. 1332–1334].

    Google Scholar 

  17. Kulintsov, P.I., Bobreshova, O.V., Aristov, I.V., Novikova, I.V., and Khrykina, L.A., Elektrokhimiya, 2000, vol. 36, p. 365 [Russ. J. Electrochem. (Engl. Transl.), 2000, vol. 36, pp. 327–329].

    Google Scholar 

  18. Bobreshova, O.V., Aristov, I.V., Kulintsov, P.I., Khrykina, L.A., and Mamaeva, O.Yu., Membrany, 2001, no. 7, p. 3.

  19. Bobreshova, O., Novikova, L., Kulintsov, P., and Balavadze, E., Desalination, 2002, vol. 149, p. 363.

    Article  CAS  Google Scholar 

  20. Pismenskaya, N., Laktionov, E., Nikonenko, V., El Attar, A., Auclair, B., and Pourcelly, G., J. Membr. Sci., 2001, vol. 181, p. 185.

    Article  CAS  Google Scholar 

  21. Pismenskaya, N., Nikonenko, V., Volodina, E., and Pourcelly, G., Desalination, 2002, vol. 147, p. 345.

    Article  CAS  Google Scholar 

  22. Helfferich, F., Ion Exchange, New York: McGraw-Hill, 1962.

    Google Scholar 

  23. Choi, J.-H. and Moon, S.-H., J. Colloid Interface Sci., 2003, vol. 265, p. 93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Pismenskaya.

Additional information

Original Russian Text © N.D. Pismenskaya, E.I. Belova, V.V. Nikonenko, C. Larchet, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 11, pp. 1381–1387.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pismenskaya, N.D., Belova, E.I., Nikonenko, V.V. et al. Electrical conductivity of cation-and anion-exchange membranes in ampholyte solutions. Russ J Electrochem 44, 1285–1291 (2008). https://doi.org/10.1134/S1023193508110141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508110141

Key words

Navigation