Skip to main content

Advertisement

Log in

Biased Expression of Parental Alleles in the Human Placenta

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The biased expression of parental alleles plays a fundamental role in the formation of the placenta as a multifunctional organ necessary for the development and survival of the fetus. First of all, this is expressed in the phenomenon of imprinting, where only a maternal or paternal allele is expressed in placental cells. The placenta uses an extended range of imprinting mechanisms compared to the embryo: histone modifications that suppress or, conversely, activate the expression of nearby genes, regulatory sequences and genes derived from retroviruses or retrotransposons, which are microRNAs that function as antisense RNAs and participate in transcriptional and post-transcriptional regulation of gene expression. In addition, incomplete suppression of the activity of one of the parental alleles is detected in the placenta, leading to a biased imprinted expression of some genes. This review shows the role of biased expression of parental alleles in the development of placental structures of an embryo, discusses the mechanisms of epigenetic control of parental alleles, mainly expressed in the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Gui, B., Slone, J., and Huang, T., Perspective: is random monoallelic expression a contributor to phenotypic variability of autosomal dominant disorders?, Front. Genet., 2017, vol. 29, no. 8. e191. https://doi.org/10.3389/fgene.2017.00191

    Article  CAS  Google Scholar 

  2. Pilvar, D., Reiman, M., Pilvar, A., and Laan, M., Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy, Clin. Epigenet., 2019, vol. 11. e94. https://doi.org/10.1186/s13148-019-0692-3

    Article  CAS  Google Scholar 

  3. Tucci, V., Isles, A.R., Kelsey, G., et al., Genomic imprinting and physiological processes in mammals, Cell, 2019, vol. 176, pp. 952—965. https://doi.org/10.1016/j.cell.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  4. Bogutz, A.B., Brind, A.J., Kobayashi, H., et al., Evolution of imprinting via lineage-specific insertion of retroviral promoters, Nat. Commun., 2019, vol. 10. e5674. https://doi.org/10.1038/s41467-019-13662-9

    Article  CAS  Google Scholar 

  5. Raas, M.W., Zijlmans, D.W., Vermeulen, M., et al., There is another: H3K27me3-mediated genomic imprinting, Trends Genet., 2022, vol. 38, no. 1, pp. 82—96. https://doi.org/10.1016/j.tig.2021.06.017

    Article  CAS  PubMed  Google Scholar 

  6. Cierna, Z., Varga, I., Danihel, L.J., et al., Intermediate trophoblast-A distinctive, unique and often unrecognized population of trophoblastic cells, Ann. Anat., 2016, vol. 204, pp. 45—50. https://doi.org/10.1016/j.aanat.2015.10.003

    Article  PubMed  Google Scholar 

  7. Norwitz, E.R., Defective implantation and placentation: laying the blueprint for pregnancy complications, Reprod. Biomed. Online, 2006, vol. 13, no. 4, pp. 591—599. https://doi.org/10.1016/s1472-6483(10)60649-9

    Article  CAS  PubMed  Google Scholar 

  8. Thamban, T., Agarwaal, V., and Khosla, S., Role of genomic imprinting in mammalian development, J. Biosci., 2020, vol. 45. e20.

    Article  Google Scholar 

  9. Varrault, A., Dantec, C., Le Digarcher, A., et al., Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network, Nucleic Acids Res., 2017, vol. 45, no. 18, pp. 10466—10480. https://doi.org/10.1093/nar/gkx672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanna, C.W., Placental imprinting: emerging mechanisms and functions, PLoS Genet., 2020, vol. 16, no. 4. e1008709. https://doi.org/10.1371/journal.pgen.1008709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starks, R.R., Kaur, H., and Tuteja, G., Mapping cis-regulatory elements in the midgestation mouse placenta, Sci. Rep., 2021, vol. 11. e22331. https://doi.org/10.1038/s41598-021-01664-x

    Article  CAS  Google Scholar 

  12. Woods, L., Perez-Garcia, V., and Hemberger, M., Regulation of placental development and its impact on fetal growth-new insights from mouse models, Front. Endocrinol. (Lausanne), 2018, vol. 9. e570. https://doi.org/10.3389/fendo.2018.00570

    Article  Google Scholar 

  13. Miri, K., Latham, K., Panning, B., et al., The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development, Development, 2013, vol. 140, pp. 4480—4489. https://doi.org/10.1242/dev.096511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang, P., Miri, K., and Varmuza, S., Unique trophoblast chromatin environment mediated by the PcG protein SFMBT2, Biol. Open, 2019, vol. 8, no. 8. e043638. https://doi.org/10.1242/bio.043638

    Article  CAS  Google Scholar 

  15. Andergassen, D., Dotter, C.P., Wenzel, D., et al., Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression, eLife, 2017, vol. 6. e25125. https://doi.org/10.7554/eLife.25125

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schertzer, M.D., Braceros, K.C., Starmer, J., et al., lncRNA-induced spread of Polycomb controlled by genome architecture, RNA abundance, and CpG island DNA, Mol. Cell, 2019, vol. 75, no. 3, pp. 523—537. https://doi.org/10.1016/j.molcel.2019.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel, D.P., Metazoan microRNAs, Cell, 2018, vol. 173, pp. 20—51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayder, H., O’Brien, J., Nadeem, U., and Peng, C., MicroRNAs: crucial regulators of placental development, Reproduction, 2018, vol. 155, no. 6, pp. R259—R271. https://doi.org/10.1530/REP-17-0603

    Article  CAS  PubMed  Google Scholar 

  19. Malnou, E.C., Umlauf, D., Mouysset, M., and Cavaille, J., Imprinted microRNA gene clusters in the evolution, development, and functions of mammalian placenta, Front. Genet., 2019, vol. 9. e706. https://doi.org/10.3389/fgene.2018.00706

    Article  CAS  Google Scholar 

  20. Inno, R., Kikas, T., Lillepea, K., and Laan, M., Coordinated expressional landscape of the human placental miRNome and transcriptome, Front. Cell Dev. Biol., 2021, vol. 9, p. e697947. https://doi.org/10.3389/fcell.2021.697947

    Article  Google Scholar 

  21. Kaneko-Ishino, T. and Ishino, F., Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals, Dev. Growth Differ., 2010, vol. 52, no. 6, pp. 533—543. https://doi.org/10.1111/j.1440-169X.2010.01194.x

    Article  CAS  PubMed  Google Scholar 

  22. Ito, M., Sferruzzi-Perri, A.N., Edwards, C.A., et al., A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development, Development, 2015, vol. 142, no. 14, pp. 2425—2430. https://doi.org/10.1242/dev.121996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bentwich, I., Prediction and validation of microRNAs and their targets, FEBS Lett., 2005, vol. 579, no. 26, pp. 5904—5910. https://doi.org/10.1016/j.febslet.2005.09.040

    Article  CAS  PubMed  Google Scholar 

  24. Haig, D. and Mainieri, A., The evolution of imprinted microRNAs and their RNA targets, Genes (Basel), 2020, vol. 11, no. 9. e1038. https://doi.org/10.3390/genes11091038

    Article  CAS  Google Scholar 

  25. Noguer-Dance, M., Abu-Amero, S., Al-Khtib, M., et al., The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta, Hum. Mol. Genet., 2010, vol. 19, no. 18, pp. 3566—3582. https://doi.org/10.1093/hmg/ddq272

    Article  CAS  PubMed  Google Scholar 

  26. Gottlieb, A., Flor, I., Nimzyk, R., et al., The expression of miRNA encoded by C19MC and miR-371-3 strongly varies among individual placentas but does not differ between spontaneous and induced abortions, Protoplasma, 2021, vol. 258, no. 1, pp. 209—218. https://doi.org/10.1007/s00709-020-01548

    Article  CAS  PubMed  Google Scholar 

  27. Gu, Y., Sun, J., Groome, L.J., and Wang, Y., Differential miRNA expression profiles between the first and third trimester human placentas, Am. J. Physiol.: Endocrinol. Metab., 2013, vol. 304, no. 8, pp. 836—843. https://doi.org/10.1152/ajpendo.00660.2012

    Article  CAS  Google Scholar 

  28. Munjas, J., Sopic, M., Stefanovic, A., et al., Non-coding RNAs in preeclampsia—molecular mechanisms and diagnostic potential, Int. J. Mol. Sci., 2021, vol. 22, no. 19. e10652. https://doi.org/10.3390/ijms221910652

    Article  CAS  Google Scholar 

  29. Delorme-Axford, E., Donker, R.B., Mouillet, J.F., et al., Human placental trophoblasts confer viral resistance to recipient cells, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 12048—12053. https://doi.org/10.1073/pnas.1304718110

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ishida, Y., Zhao, D., Ohkuchi, A., et al., Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy, Int. J. Mol. Med., 2015, vol. 35, pp. 1511—1524. https://doi.org/10.3892/ijmm.2015.2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoue, K., Hirose, M., Inoue, H., et al., The rodent-specific microRNA cluster within the Sfmbt2 gene is imprinted and essential for placental development, Cell Rep., 2017, vol. 19, pp. 949—956. https://doi.org/10.1016/j.celrep.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  32. Farhadova, S., Gomez-Velazquez, M., and Feil, R., Stability and lability of parental methylation imprints in development and disease, Genes (Basel), 2019, vol. 10, no. 12. e999. https://doi.org/10.3390/genes10120999

    Article  CAS  Google Scholar 

  33. Zeng, Y. and Chen, T., DNA methylation reprogramming during mammalian development, Genes (Basel), 2019, vol. 10, no. 4. e257. https://doi.org/10.3390/genes10040257

    Article  CAS  Google Scholar 

  34. Huang, Y., Liu, H., Du, H., et al., Developmental features of DNA methylation in CpG islands of human gametes and preimplantation embryos, Exp. Ther. Med., 2019, vol. 17, no. 6, pp. 4447—4456. https://doi.org/10.3892/etm.2019.7523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, N., Coluccio, A., Thorball, C.W., et al., ZNF445 is a primary regulator of genomic imprinting, Genes Dev., 2019, vol. 33, pp. 49—54. https://doi.org/10.1101/gad.320069.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Decato, B.E., Lopez-Tello, J., Sferruzzi-Perri, A.N., et al., DNA methylation divergence and tissue specialization in the developing mouse placenta, Mol. Biol. Evol., 2017, vol. 34, pp. 1702—1712. https://doi.org/10.1093/molbev/msx112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duffie, R., Ajjan, S., Greenberg, M.V., et al., The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals, Genes Dev., 2014, vol. 28, pp. 463—478. https://doi.org/10.1101/gad.232058.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, Z., Djekidel, M.N., and Zhang, Y., Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos, Nat. Genet., 2021, vol. 53, no. 4, pp. 551—563. https://doi.org/10.1038/s41588-021-00821-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jambhekar, A., Dhall, A., and Shi, Y., Roles and regulation of histone methylation in animal development, Nat. Rev. Mol. Cell Biol., 2019, vol. 20, no. 10, pp. 625—641. https://doi.org/10.1038/s41580-019-0151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Healy, E., Mucha, M., Glancy, E., et al., PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation, Mol. Cell, 2019, vol. 76, no. 3, pp. 437—452. https://doi.org/10.1016/j.molcel.2019.08.012

    Article  CAS  PubMed  Google Scholar 

  41. Cheutin, T. and Cavalli, G., The multiscale effects of polycomb mechanisms on 3D chromatin folding, Crit. Rev. Biochem. Mol. Biol., 2019, vol. 54, no. 5, pp. 399—417. https://doi.org/10.1080/10409238.2019.1679082

    Article  CAS  PubMed  Google Scholar 

  42. Yang, P., Wang, Y., and Macfarlan, T.S., The role of KRAB-ZFPs in transposable element repression and mammalian evolution, Trends Genet., 2017, vol. 33, no. 11, pp. 871—881. https://doi.org/10.1016/j.tig.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, Q. and Xie, W., Epigenome in early mammalian development: inheritance, reprogramming and establishment, Trends Cell Biol., 2018, vol. 28, pp. 237—253.

    Article  CAS  PubMed  Google Scholar 

  44. Prokopuk, L., Stringer, J.M., White, C.R., et al., Loss of maternal EED results in postnatal overgrowth, Clin. Epigenet., 2018, vol. 10, no. 1. e95. https://doi.org/10.1186/s13148-018-0526-8

    Article  CAS  Google Scholar 

  45. Hanna, C.W. and Gavin, K., Features and mechanisms of canonical and noncanonical genomic imprinting, Genes Dev., 2021, vol. 35, nos. 11—12, pp. 821—834. https://doi.org/10.1101/gad.348422.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hanna, C.W., Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues, Genome Biol., 2019, vol. 20. e225. https://doi.org/10.1186/s13059-019-1833-x

    Article  CAS  Google Scholar 

  47. Chen, Z., Yin, Q., Inoue, A., et al., Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells, Sci. Adv., 2019, vol. 5, no. 12. e7246. https://doi.org/10.1126/sciadv.aay7246

    Article  CAS  Google Scholar 

  48. Zhang, W., Chen, Z., Yin, Q., et al., Maternal-biased H3K27me3 correlates with paternal-specific gene expression in the human morula, Genes Dev., 2019, vol. 33, nos. 7—8, pp. 382—387. https://doi.org/10.1101/gad.323105.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Enriquez-Gasca, R., Gould, P.A., and Rowe, H.M., Host gene regulation by transposable elements: the new, the old and the ugly, Viruses, 2020, vol. 12, no. 10. e1089. https://doi.org/10.3390/v12101089

    Article  CAS  Google Scholar 

  50. Senft, A.D. and Macfarlan, T.S., Transposable elements shape the evolution of mammalian development, Nat. Rev. Genet., 2021, vol. 22, no. 11, pp. 691—711. https://doi.org/10.1038/s41576-021-00385-1

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, X. and Muglia, L.J., Baby’s best Foe-riend: endogenous retroviruses and the evolution of eutherian reproduction, Placenta, 2021, vol. 15, no. 113, pp. 1—7. https://doi.org/10.1016/j.placenta.2021.02.011

    Article  CAS  Google Scholar 

  52. Schust, D.J., Bonney, E.A., Sugimoto, J., et al., The immunology of syncytialized trophoblast, Int. J. Mol. Sci., 2021, vol. 2, no. 4. e1767. https://doi.org/10.3390/ijms22041767

    Article  CAS  Google Scholar 

  53. Sugimoto, J., Sugimoto, M., Bernstein, H., et al., A novel human endogenous retroviral protein inhibits cell—cell fusion, Sci. Rep., 2013, vol. 3. e1462. https://doi.org/10.1038/srep01462

    Article  CAS  Google Scholar 

  54. Roberts, R.M., Ezashi, T., Schulz, L.C., et al., Syncytins expressed in human placental trophoblast, Placenta, 2021, vol. 113, pp. 8—14. https://doi.org/10.1016/j.placenta.2021.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Catalog of imprinted genes. http://igc.otago.ac.nz.

  56. Roberts, R.M., Green, J.A., and Schulz, L.C., The evolution of the placenta, Reproduction, 2016, vol. 152, pp. 179—189. https://doi.org/10.1530/REP-16-0325

    Article  Google Scholar 

  57. Henke, C., Strissel, P.L., and Schubert, M.T., Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis, Retrovirology, 2015, vol. 12. e9. https://doi.org/10.1186/s12977-015-0138-8

    Article  CAS  Google Scholar 

  58. Miao, J., Zhu, Y., Xu, L., et al., MiR‑181b‑5p inhibits trophoblast cell migration and invasion through targeting S1PR1 in multiple abnormal trophoblast invasion‑related events, Mol. Med. Rep., 2020, vol. 22, no. 5, pp. 4442—4451. https://doi.org/10.3892/mmr.2020.11515

    Article  CAS  PubMed  Google Scholar 

  59. Barlow, D.P., Methylation and imprinting: from host defense to gene regulation?, Science, 1993, vol. 260, pp. 309—310. https://doi.org/10.1126/science.8469984

    Article  CAS  PubMed  Google Scholar 

  60. Ondicova, M., Oakey, R.J., and Walsh, C.P., Is imprinting the result of “friendly fire” by the host defense system?, PLoS Genet., 2020, vol. 16. e1008599. https://doi.org/10.1126/science.8469984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jahner, D., Stuhlmann, H., Stewart, C.L., et al., De novo methylation and expression of retroviral genomes during mouse embryogenesis, Nature, 1982, vol. 298, pp. 623—628. https://doi.org/10.1038/298623a0

    Article  CAS  PubMed  Google Scholar 

  62. Chaillet, J., Vogt, T., Beier, D., and Leder, P., Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis, Cell, 1991, vol. 66, pp. 77—83. https://doi.org/10.1016/0092-8674(91)90140-t

    Article  CAS  PubMed  Google Scholar 

  63. Walter, J., Hutter, B., Khare, T., and Paulsen, M., Repetitive elements in imprinted genes, Cytogenet. Genome Res., 2006, vol. 113, pp. 109—115. https://doi.org/10.1159/000090821

    Article  CAS  PubMed  Google Scholar 

  64. Cowley, M., de Burca, A., McCole, R.B., et al., Short Interspersed Element (SINE) depletion and Long Interspersed Element (LINE) abundance are not features universally required for imprinting, PLoS One, 2011, vol. 6. e18953. https://doi.org/10.1371/journal.pone.0018953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wood, A.J., Bourc’his, D., Bestor, T.H., and Oakey, R.J., Allele-specific demethylation at an imprinted mammalian promoter, Nucleic Acids Res., 2007, vol. 35, pp. 7031—7039. https://doi.org/10.1093/nar/gkm742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wood, A.J., Roberts, R.G., Monk, D., et al., A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation, PLoS Genet., 2007, vol. 3. e20. https://doi.org/10.1371/journal.pgen.0030020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Youngson, N.A., Kocialkowski, S., Peel, N., and Ferguson-Smith, A.C., A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting, J. Mol. Evol., 2005, vol. 61, pp. 481—490. https://doi.org/10.1007/s00239-004-0332-0

    Article  CAS  PubMed  Google Scholar 

  68. Cowley, M. and Oakey, R.J., Retrotransposition and genomic imprinting, Brief. Funct. Genomics, 2010, vol. 9, pp. 340—346. https://doi.org/10.1093/bfgp/elq015

    Article  CAS  PubMed  Google Scholar 

  69. Thomas, J.H. and Schneider, S., Coevolution of retroelements and tandem zinc finger genes, Genome Res., 2011, vol. 21, pp. 1800—1812. https://doi.org/10.1101/gr.121749.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, P., Wang, Y., Hoang, D., et al., A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568, Science, 2017, vol. 356, pp. 757—759. https://doi.org/10.1126/science.aah6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Helleboid, P., Heusel, M., Duc, J., et al., The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification, EMBO J., 2019, vol. 38. e101220. https://doi.org/10.15252/embj.2018101220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jacobs, F.M., Greenberg, D., Nguyen, N., et al., An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons, Nature, 2014, vol. 516, pp. 242—245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rowe, H.M., Friedli, M., Offner, S., et al., De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET, Development, 2013, vol. 140, pp. 519—529. https://doi.org/10.1242/dev.087585

    Article  CAS  PubMed  Google Scholar 

  74. Imbeault, M., Helleboid, P.Y., and Trono, D., KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks, Nature, 2017, vol. 543, pp. 550—554. https://doi.org/10.1038/nature21683

    Article  CAS  PubMed  Google Scholar 

  75. Strogantsev, R., Krueger, F., Yamazawa, K., et al., Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression, Genome Biol., 2015, vol. 16. e112. https://doi.org/10.1186/s13059-015-0672-7

    Article  CAS  Google Scholar 

  76. Moore, T. and Haig, D., Genomic imprinting in mammalian development: a parental tug-of-war, TIG, 1991, vol. 7, pp. 45—49. https://doi.org/10.1016/0168-9525(91)90230-N

    Article  CAS  PubMed  Google Scholar 

  77. Quenneville, S., Verde, G., Corsinotti, A., et al., In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions, Mol. Cell, 2011, vol. 44, pp. 361—372. https://doi.org/10.1016/j.molcel.2011.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, X., Ito, M., Zhou, F., et al., A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints, Dev. Cell, 2008, vol. 15, pp. 547—557. https://doi.org/10.1016/j.devcel.2008.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Criscione, S.W., Theodosakis, N., Micevic, G., et al., Genome-wide characterization of human L1 antisense promoter-driven transcripts, BMC Genomics, 2016, vol. 17. e463. https://doi.org/10.1186/s12864-016-2800-5

    Article  CAS  Google Scholar 

  80. Castro-Diaz, N., Ecco, G., Coluccio, A., et al., Evolutionally dynamic L1 regulation in embryonic stem cells, Genes Dev., 2014, vol. 28, no. 13, pp. 397—409. https://doi.org/10.1101/gad.241661.114

    Article  CAS  Google Scholar 

  81. Vincenz, C., Lovett, J.L., Wu, W., et al., Loss of imprinting in human placentas is widespread, coordinated, and predicts birth phenotypes, Mol. Biol. Evol., 2020, vol. 37, no. 2, pp. 429—441. https://doi.org/10.1093/molbev/msz226

    Article  CAS  PubMed  Google Scholar 

  82. Wang, X.X., Miller, D.C., Harman, R., et al., Paternal expressed genes predominate in the placenta, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 10705—10710. https://doi.org/10.1073/pnas.1308998110

    Article  PubMed  PubMed Central  Google Scholar 

  83. Monteagudo-Sánchez, A., Sánchez-Delgado, M., Hernandez, J.R., et al., Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction, Clin. Epigenet., 2019, vol. 11, no. 1. e35. https://doi.org/10.1186/s13148-019-0630-4

    Article  CAS  Google Scholar 

  84. Kappil, M.A., Green, B.B., Armstrong, D.A., et al., Placental expression profile of imprinted genes impacts birth weight, Epigenetics, 2015, vol. 10, no. 9, pp. 842—849. https://doi.org/10.1080/15592294.2015.1073881

    Article  PubMed  PubMed Central  Google Scholar 

  85. Court, F., Tayama, C., Romanelli, V., et al., Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment, Genome Res., 2014, vol. 24, no. 4, pp. 554—569. https://doi.org/10.1101/gr.164913.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hanna, C.W., Penaherrera, M.S., Saadeh, H., et al., Pervasive polymorphic imprinted methylation in the human, Genome Res., 2016, vol. 26, no. 6, pp. 756—767. https://doi.org/10.1101/gr.196139.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanchez-Delgado, M., Riccio, A., Eggermann, T., et al., Causes and consequences of multi-locus imprinting disturbances in humans, Trends Genet., 2016, vol. 32, no. 7, pp. 444—455. https://doi.org/10.1016/j.tig.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  88. Xu, D., Zhang, C., Li, J., et al., Polymorphic imprinting of SLC38A4 gene in bovine placenta, Biochem. Genet., 2018, vol. 56, no. 6, pp. 639—649. https://doi.org/10.1007/s10528-018-9866-5

    Article  CAS  PubMed  Google Scholar 

  89. Sanli, I. and Feil, R., Chromatin mechanisms in the developmental control of imprinted gene expression, Int. J. Biochem. Cell Biol., 2015, vol. 67, pp. 139—147. https://doi.org/10.1016/j.biocel.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  90. Sazhenova, E.A., Nikitina, T.V., Skryabin, N.A., et al., Epigenetic status of imprinted genes in placenta during recurrent pregnancy loss, Russ. J. Genet., 2017, vol. 53, no. 3, pp. 376—387. https://doi.org/10.1134/S1022795417020090

    Article  CAS  Google Scholar 

  91. Sazhenova, E.A., Nikitina, T.V., Vasilyev, S.A., et al., NLRP7 variants in spontaneous abortions with multilocus imprinting disturbances from women with recurrent pregnancy loss, J. Assisted Reprod. Genet., 2021, vol. 38, no. 11, pp. 2893—2908. https://doi.org/10.1007/s10815-021-02312-z

    Article  Google Scholar 

  92. Hirasawa, R., Chiba, H., Kaneda, M., et al., Maternal and zygotic dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development, Genes Dev., 2008, vol. 22, pp. 1607—1616. https://doi.org/10.1101/gad.1667008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wyns, C., De Geyter, C., Calhaz-Jorge, C., et al., ART in Europe, 2017: Results generated from European registries by ESHRE. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE), Hum. Reprod. Open, 2021, vol. 2021, no. 3. e026. https://doi.org/10.1093/hropen/hoab026

  94. Kobayashi, H., Canonical and non-canonical genomic imprinting in rodents, Front. Cell Dev. Biol., 2021, vol. 9. e713878. https://doi.org/10.3389/fcell.2021.713878

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sazhenova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies using animals as an object of research. This article does not contain any research involving people as an object of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhenova, E.A., Vasilev, S.A. & Lebedev, I.N. Biased Expression of Parental Alleles in the Human Placenta. Russ J Genet 59, 211–225 (2023). https://doi.org/10.1134/S1022795423020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423020114

Keywords:

Navigation