Skip to main content

Advertisement

Log in

Polymorphic Variants of the Neutrophil Cytosolic Factor 2 Gene: Associations with Susceptibility to Type 2 Diabetes Mellitus and Cardiovascular Autonomic Neuropathy

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We examined 3206 unrelated individuals of Slavic origin (1579 T2DM patients, including 535 patients with cardiovascular autonomic neuropathy, and 1627 healthy volunteers). SNPs were genotyped with the use of a MassArray Analyzer 4 genomic time-of-flight mass spectrometer. Statistical analysis of the obtained data was performed using the SNPStats software program. The genotype rs17849502-G/T NCF2 was found to be associated with the increased risk of T2DM (OR = 1.42, 95% CI = 1.08–1.87, P = 0.043). Analysis of the NCF2 genotype frequencies stratified by body mass index (BMI) showed that the rs17849502-G/T genotype was statistically significantly more frequent only in patients who were overweight and obese (OR = 1.34, 95% CI = 1.01–1.77, P = 0.012). In addition, the rs789180-A/T (OR = 1.46, 95% CI = 1.11–1.92, P = 0.015) and rs10911363-G/T (OR = 0.77, 95% CI = 0.61–0.97, P = 0.046) genotypes were found to be associated with cardiovascular autonomic neuropathy in T2DM regardless of sex, age, and BMI of the patients. Analysis of the effect of NCF2 polymorphism on the blood plasma biochemical parameters showed that, in the carriers of the H5 rs796860A-rs789180T-rs17849502G-rs2274064C-rs10911363G-rs147415774C-rs2274065A-rs3754515C haplotype, the glycated hemoglobin level was 4.81% higher (95% CI = 2.63–6.98, P < 0.0001) compared to that in the carriers of the reference haplotype H1 rs796860A-rs789180А-rs17849502G-rs2274064Т-rs10911363G-rs147415774C-rs2274065A-rs3754515C. Thus, in this study, associations of the NCF2 rs17849502 with the risk of T2DM, as well as associations of rs789180 and rs10911363 with cardiovascular autonomic neuropathy, were demonstrated for the first time. The data obtained point to considerable contribution of the NCF2 polymorphism to the pathogenesis of T2DM and lay the groundwork for further studies of genetic and biochemical alterations of the redox homeostasis system in type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Saeedi, P., Petersohn, I., Salpea, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, Diabetes Res. Clin. Pract., 2019, vol. 157, p. 107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  2. Ziegler, D., Voss, A., Rathmann, W., et al., Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: the KORA S4, Diabetologia, 2015, vol. 58, no. 5, pp. 1118—1128. https://doi.org/10.1007/s00125-015-3534-7

    Article  CAS  PubMed  Google Scholar 

  3. Moshkhoeva, L.S. and Barinov, A.N., Optimization of the diagnostic method for cardiac autonomic neuropathy in type 2 diabetes mellitus, Med. Sovet, 2021, no. 10, pp. 178—183. https://doi.org/10.21518/2079-701X-2021-10-178-183

  4. Urner, S., Ho, F., Jha, J.C., et al., NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications, Antioxid. Redox Signaling, 2020, vol. 33, no. 6, pp. 415—434. https://doi.org/10.1089/ars.2020.8047

    Article  CAS  Google Scholar 

  5. Onyango, A.N., Cellular stresses and stress responses in the pathogenesis of insulin resistance, Oxid. Med. Cell. Longevity, 2018, p. 4321714. https://doi.org/10.1155/2018/4321714

  6. Sies, H. and Jones, D.P., Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., 2020, vol. 21, pp. 363—383. https://doi.org/10.1038/s41580-020-0230-3

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, J.P. and Hubert, M.T., The role of NADPH oxidases in infectious and inflammatory diseases, Redox Biol., 2021, p. 102159. https://doi.org/10.1016/j.redox.2021.102159

  8. Schreiber, R., Ferreira-Sae, M.C., Tucunduva, A.C., et al., CYBA C242T polymorphism is associated with obesity and diabetes mellitus in Brazilian hypertensive patients, Diabetic Med., 2012, vol. 29, no. 7, pp. e55—e61. https://doi.org/10.1111/j.1464-5491.2012.03594.x

    Article  CAS  PubMed  Google Scholar 

  9. Osmenda, G., Matusik, P.T., Sliwa, T., et al., Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox subunit polymorphisms, systemic oxidative stress, endothelial dysfunction, and atherosclerosis in type 2 diabetes mellitus, Polish Archiv. Int. Med., 2021, vol. 131, no. 5, pp. 447—454. https://doi.org/10.20452/pamw.15937

    Article  Google Scholar 

  10. Yuan, H., Zhang, X., Huang, X., et al., NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways, PLoS One, 2010, vol. 5. e15726. https://doi.org/10.1371/journal.pone.0015726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, Y., Li, W., Yin, Y., et al., AST IV inhibits H(2)O(2)-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-beta1/Smad2 pathway, Int. J. Mol. Med., 2015, vol. 35, pp. 1667—1674. https://doi.org/10.3892/ijmm.2015.2188

    Article  CAS  PubMed  Google Scholar 

  12. Dedov, I.I., Shestakova, M.V., Maiorov, A.Yu., et al., Standards of specialized diabetes care, issue 9, Sakh. Diabet, 2019, vol. 22, no. 1S1, pp. 1—144. https://doi.org/10.14341/DM221S1

  13. Azarova, Yu.E., Klesova, E.Yu., Sakali, S.Yu., et al., Contribution of rs11927381 polymorphism of the IGF2BP2 gene to the pathogenesis of type 2 diabetes, Nauchn. Rez. Biomed. Issled., 2020, vol. 6, no. 1, pp. 9—19. https://doi.org/10.18413/2658-6533-2020-6-1-0-2

    Article  Google Scholar 

  14. Azarova, Yu.E., Klesova, E.Yu., Samgina, T.A., et al., The role of CYBA gene polymorphisms in pathogenesis of type 2 diabetes mellitus, Med. Genet., 2019, vol. 18, no. 8, pp. 37—48. https://doi.org/10.25557/2073-7998.2019.08.37-48

    Article  Google Scholar 

  15. Vignais, P.V., The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Cell. Mol. Life Sci., 2002, vol. 59, no. 9, pp. 1428—1459. https://doi.org/10.1007/s00018-002-8520-9

    Article  CAS  PubMed  Google Scholar 

  16. Sahoo, S., Meijles, D.N., and Pagano, P.J., NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?, Clin. Sci., 2016, vol. 130, no. 5, pp. 317—335. https://doi.org/10.1042/CS20150087

    Article  CAS  Google Scholar 

  17. Manea, A., NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology, Cell Tissue Res., 2010, vol. 342, no. 3, pp. 325—339. https://doi.org/10.1007/s00441-010-1060-y

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira, H.R., Verlengia, R., Carvalho, C.R., et al., Pancreatic beta cells express phagocyte-like NADPH oxidase, Diabetes, 2003, vol. 52, no. 6, pp. 1457—1463. https://doi.org/10.2337/diabetes.52.6.1457

    Article  CAS  PubMed  Google Scholar 

  19. Uchizono, Y., Takeya, R., Iwase, M., et al., Expression of isoforms of NADPH oxidase components in rat pancreatic islets, Life Sci., 2006, vol. 80, no. 2, pp. 133—139. https://doi.org/10.1016/j.lfs.2006.08.031

    Article  CAS  PubMed  Google Scholar 

  20. Graciano, M.F., Santos, L.R., Curi, R., et al., NAD(P)H oxidase participates in the palmitate-induced superoxide production and insulin secretion by rat pancreatic islets, J. Cell Physiol., 2011, vol. 226, no. 4, pp. 1110—1117. https://doi.org/10.1002/jcp.22432

  21. de Mendez, I., Garrett, M.C., Adams, A.G., et al., Role of p67-phox SH3 domains in assembly of the NADPH oxidase system, J. Biol. Chem., 1994, vol. 269, no. 23, pp. 16326—16332. https://doi.org/10.1016/S0021-9258(17)34011-5

    Article  CAS  PubMed  Google Scholar 

  22. Leusen, J.H., Fluiter, K., Hilarius, P.M., et al., Interactions between the cytosolic components p47phox and p67phox of the human neutrophil NADPH oxidase that are not required for activation in the cell-free system, J. Biol. Chem., 1995, vol. 270, no. 19, pp. 11216—11221. https://doi.org/10.1074/jbc.270.19.11216

    Article  CAS  PubMed  Google Scholar 

  23. Ricaño-Ponce, I., Gutierrez-Achury, J., Costa, A.F., et al., Immunochip meta-analysis in European and Argentinian populations identifies two novel genetic loci associated with celiac disease, Eur. J. Hum. Genet., 2020, vol. 28, no. 3, pp. 313—323. https://doi.org/10.1038/s41431-019-0520-4

    Article  CAS  PubMed  Google Scholar 

  24. Gutierrez-Achury, J., Zorro, M.M., Ricaño-Ponce, I., et al., Functional implications of disease-specific variants in loci jointly associated with coeliac disease and rheumatoid arthritis, Hum. Mol. Genet., 2016, vol. 25, no. 1, pp. 180—190. https://doi.org/10.1093/hmg/ddv455

    Article  CAS  PubMed  Google Scholar 

  25. Acosta-Herrera, M., Kerick, M., González-Serna, D., et al., Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases, Ann. Rheum. Dis., 2019, vol. 78, no. 3, pp. 311—319. https://doi.org/10.1136/annrheumdis-2018-214127

    Article  CAS  PubMed  Google Scholar 

  26. Morris, D.L., Sheng, Y., Zhang, Y., et al., Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus, Nat. Genet., 2016, vol. 48, no. 8, pp. 940—946. https://doi.org/10.1038/ng.3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan, D., Rebelato, E., Abdulkader, F., et al., Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells, Endocrinology, 2009, vol. 150, no. 5, pp. 2197—2201. https://doi.org/10.1210/en.2008-1149

    Article  CAS  PubMed  Google Scholar 

  28. Syed, I., Kyathanahalli, C.N., and Kowluru, A., Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: role of protein prenylation, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 300, no. 3, pp. R756—R762. https://doi.org/10.1152/ajpregu.00786.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baig, S., Shabeer, M., Rizi, E.P., et al., Heredity of type 2 diabetes confers increased susceptibility to oxidative stress and inflammation, BMJ Open Diabetes Res. Care, 2020, vol. 8, no. 1. e000945. https://doi.org/10.1136/bmjdrc-2019-000945

    Article  PubMed  PubMed Central  Google Scholar 

  30. Papanas, N. and Ziegler, D., Risk factors and comorbidities in diabetic neuropathy: an update, Rev. Diabet. Stud., 2015, vol. 12, nos. 1—2, pp. 48—62. https://doi.org/10.1900/RDS.2015.12.48

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pande, M., Hur, J., Hong, Y., et al., Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes, Diabetes, 2011, vol. 60, no. 7, pp. 1981—1989. https://doi.org/10.2337/db10-1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, J., Pan, P., Anyika, M., et al., Modulating molecular chaperones improves mitochondrial bioenergetics and decreases the inflammatory transcriptome in diabetic sensory neurons, ACS Chem. Neurosci., 2015, vol. 6, no. 9, pp. 1637—1648. https://doi.org/10.1021/acschemneuro.5b00165

    Article  CAS  PubMed  Google Scholar 

  33. Hur, J., Dauch, J.R., Hinder, L.M., et al., The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes, Diabetes, 2015, vol. 64, no. 9, pp. 3294—3304. https://doi.org/10.2337/db15-0133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sas, K.M., Kayampilly, P., Byun, J., et al., Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications, JCI Insight, 2016, vol. 1, no. 15. e86976. https://doi.org/10.1172/jci.insight.86976

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hinder, L.M., Park, M., Rumora, A.E., et al., Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease, J. Cell Mol. Med., 2017, vol. 21, no. 9, pp. 2140—2152. https://doi.org/10.1111/jcmm.13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo, K., Eid, S.A., Elzinga, S.E., et al., Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy, Clin. Epigenet., 2020, vol. 12, no. 1, pp. 1—16. https://doi.org/10.1186/s13148-020-00913-6

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 20-15-00227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Azarova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarova, I.E., Klyosova, E.Y., Kolomoets, I.I. et al. Polymorphic Variants of the Neutrophil Cytosolic Factor 2 Gene: Associations with Susceptibility to Type 2 Diabetes Mellitus and Cardiovascular Autonomic Neuropathy. Russ J Genet 58, 593–602 (2022). https://doi.org/10.1134/S1022795422050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050039

Keywords:

Navigation