Skip to main content
Log in

Effect of Administration of Carnitine, Resveratrol, and Aromatic Amino Acids with High-Fat-High-Fructose Diet on Gene Expression in Liver of Rats: Full Transcriptome Analysis

  • GENERAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Differential expression of 30 584 genes from a microarray was studied in the liver of male Wistar rats, fed for 63 days with high-fat high-fructose diet supplemented with L-carnitine, resveratrol, tyrosine, or tryptophan, using the method of whole-transcriptome gene expression profiling according to the Agilent One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling protocol (version 6.8). To identify metabolic pathways (KEGGS) that are the targets of the applied dietary treatments, transcriptomic data were processed with bioinformatics methods in the R environment. The data obtained suggest that the intake of biologically active substances, i.e., lipid metabolism modulators (including L-Car, Res, and Tyr and Trp aromatic amino acids), despite clear differences in primary targets of their effects and phenotypic consequences for the organism at tissue and organ levels, at the intermediate stages engages a complex of genes that are largely similar and interrelated in their function. These genes are involved in the regulation of cell cycle, proliferation, apoptosis, intercellular interactions, immune response, and inflammation. Moreover, the sign of DE of each of these genes, taken separately, does not allow for unambiguous prediction the direction of processes manifested in strengthening or, alternatively, attenuation of lipogenesis and the observed accumulation of fatty inclusions in the liver cells. Newly described, not reported in the available literature, is the differentiated effect between L-Car, Res, and Tyr, on one hand, and Trp, on the other hand, on the metabolic pathway of arachidonic acid, including the formation of oxylipins (lipoxins), prostaglandins, and thromboxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tutel’yan, V.A., Kiseleva, T.L., Kochetkova, A.A., et al., Promising sources of phytonutrients for specialized foods with a modified carbohydrate profile: the experience of traditional medicine, Vopr. Pitan., 2016, vol. 85, no. 4, pp. 46–60.

    Google Scholar 

  2. Tutel’yan, V.A., Kochetkova, A.A., and Sarkisyan, V.A., Specialized food products in the modern paradigm of alimentary correction of metabolic disorders, FoodLife 2018. Geneticheskie resursy rastenii i zdorovoe pitanie: potentsial zernovykh kul’tur (FoodLife 2018: Plant Genetic Resources and Healthy Diet: The Potential of Crops) (Proc. Conf.), 2018, p. 22. https://docplayer.ru/77452959-I-mezhdisciplinarnaya-konferenciya. html. Accessed May 22, 2020.

  3. Bojanowska, E. and Ciosek, J., Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification of food preference behavior, Curr. Neuropharmacol., 2016, vol. 14, no. 22, pp. 118–142. https://doi.org/10.2174/1570159x14666151109103147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radzhabkadiev, R.M., Korosteleva, M.M., Evstratova, V.S., et al., L-carnitine: properties and perspectives of use in sports practice, Vopr. Pitan., 2015, vol. 84, no. 3, pp. 4–12.

    CAS  PubMed  Google Scholar 

  5. Brass, E.P., Carnitine and sports medicine: use or abuse?, Ann. N.Y. Acad. Sci., 2004, vol. 1033, no. 1, pp. 67–78. https://doi.org/10.1196/annals.1320.006

    Article  CAS  PubMed  Google Scholar 

  6. Rauf, A., Imran, M., Suleria, H.A.R., et al., A comprehensive review of the health perspectives of resveratrol, Food Funct., 2017, vol. 8, no. 12, pp. 4284–4305. https://doi.org/10.1039/c7fo01300k

    Article  CAS  PubMed  Google Scholar 

  7. Repossi, G., Das, U., and Eynard, A.R., Molecular basis of the beneficial actions of resveratrol, Arch. Med. Res., 2020, vol. 51, no. 2, pp. 105–114. https://doi.org/10.1016/j.arcmed.2020.01.010

    Article  CAS  PubMed  Google Scholar 

  8. Herrera, C.P., Smith, K., Atkinson, F., et al., High-glycaemic index and -glycaemic load meals increase the availability of tryptophan in healthy volunteers, Br. J. Nutr., 2011, vol. 105, no. 11, pp. 1601–1606. https://doi.org/10.1017/S0007114510005192

    Article  CAS  PubMed  Google Scholar 

  9. Christenson, J., Whitby, S.J., Mellor, D., et al., The effects of resveratrol supplementation in overweight and obese humans: a systematic review of randomized trials, Metab. Syndr. Relat. Disord., 2016, vol. 14, no. 7, pp. 323–333. https://doi.org/10.1089/met.2016.0035

    Article  CAS  PubMed  Google Scholar 

  10. Pooyandjoo, M., Nouhi, M., Shab-Bidar, S., et al., The effect of (L-)carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials, Obes. Rev., 2016, vol. 17, no. 10, pp. 970–976. https://doi.org/10.1111/obr.12436

    Article  CAS  PubMed  Google Scholar 

  11. Guide for the care and use of laboratory animals. Eighth Edition / Committee for the Update of the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research (ILAR); Division on Earth and Life Studies (DELS); National Research Council of the national academies. Washington: The National Academies Press. 2011

  12. Apryatin, S.A., Shipelin, V.A., Trusov, N.V., et al., Comparative analysis of the influence of a high-fat/high-carbohydrate diet on the level of anxiety and neuromotor and cognitive functions in Wistar and DAT-KO rats, Physiol. Rep., 2019, vol. 7, no. 4. e13987. https://doi.org/10.14814/phy2.13987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agilent total RNA isolation mini kit: protocol, 2015, 5th ed. http://www.agilent.com/cs/library/usermanuals/Public/5188_2710_A1.pdf.

  14. Agilent one-color microarray-based gene expression analysis (low input quick Amp labeling), version 6.8, 2015. http://www.agilent.com/cs/library/usermanuals/Public/G4140-90040_GeneExpression_OneColor_6.9.pdf.

  15. Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., Ser. B, 1995, vol. 57, no. 1, pp. 289–300. https://doi.org/10.2307/2346101

    Article  Google Scholar 

  16. Apryatin, S.A., Trusov, N.V., Gorbachev, A.Yu., et al., Full transcriptome profiling of the liver of fat-, fructose- and cholesterol-fed C57black/6J mice, Russ. J. Genet., 2019, vol. 55, no. 4, pp. 399–410. https://doi.org/10.1134/S1022795419040021

    Article  CAS  Google Scholar 

  17. Apryatin, S.A., Trusov, N.V., Gorbachev, A.Yu., et al., Comparative whole transcriptome profiling of liver tissue from Wistar rats fed with diets containing different amounts of fat, fructose, and cholesterol, Biochemistry (Moscow), 2019, vol. 84, no. 9, pp. 1093–1106. https://doi.org/10.1134/S0006297919090128

    Article  CAS  PubMed  Google Scholar 

  18. Trusov, N.V., Apryatin, S.A., Gorbachev, A.Yu., et al., Effect of hypercaloric diet and quercetin on the full-transcriptomic profile of liver tissue in Zucker-LEPRfa rats, Probl. Endokrinol., 2018, vol. 64, no. 6, pp. 371–382. https://doi.org/10.14341/probl9936

    Article  Google Scholar 

  19. Yang, T., Espenshade, P.J., Wrigh, M.E., et al., Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER, Cell, 2002, vol. 110, no. 4, pp. 489–500. https://doi.org/10.1016/s0092-8674(02)00872-3

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Takaishi, K., Cook, W., et al., Insig-1 brakes lipogenesis in adipocytes and inhibits differentiation of preadipocytes, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 16, pp. 9476–9481. https://doi.org/10.1073/pnas.1133426100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, S.H., Zhuang, X.H., Liu, Y.T., et al., Expression and significance of lipin1 and AMPKα in hepatic insulin resistance in diet-induced insulin resistance rats, Exp. Clin. Endocrinol. Diabetes, 2012, vol. 120, no. 2, pp. 84–88. https://doi.org/10.1055/s-0031-1298013

    Article  CAS  PubMed  Google Scholar 

  22. Römer, M., Eichner, J., Metzger, U., et al., Cross-platform toxicogenomics for the prediction of non-genotoxic hepatocarcinogenesis in rat, PLoS One, 2014, vol. 9, no. 5. e97640. https://doi.org/10.1371/journal.pone.0097640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirota, T., Okano, T., Kokame, K., et al., Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts, J. Biol. Chem., 2002, vol. 277, no. 46, pp. 44244–44251. https://doi.org/10.1074/jbc.M206233200

    Article  CAS  PubMed  Google Scholar 

  24. Qi, G., Wu, W., Mi, Y., et al., Tea polyphenols direct Bmal1-driven ameliorating of the redox imbalance and mitochondrial dysfunction in hepatocytes, Food. Chem. Toxicol., 2018, vol. 122, pp. 181–193. https://doi.org/10.1016/j.fct.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  25. Yaman, E., Gasper, R., Koerner, C., et al., RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange, FEBS J., 2009, vol. 276, no. 16, pp. 4607–4616. https://doi.org/10.1111/j.1742-4658.2009.07166.x

    Article  CAS  PubMed  Google Scholar 

  26. Barrientos, T., Frank, D., Kuwahara, K., et al., Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin, J. Biol. Chem., 2007, vol. 282, no. 11, pp. 8393–8403. https://doi.org/10.1074/jbc.M607549200

    Article  CAS  PubMed  Google Scholar 

  27. Biragyn, A., Ruffini, P.A., Leifer, C.A., et al., Toll-like receptor 4-dependent activation of dendritic cells by defensin 2, Science, 2002, vol. 298, no. 5595, pp. 1025–1029. https://doi.org/10.1126/science.1075565

    Article  CAS  PubMed  Google Scholar 

  28. Yang, D., Chertov, O., Bykovskaia, S.N., et al., β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6, Science, 1999, vol. 286, no. 5439, pp. 525–528. https://doi.org/10.1126/science.286.5439.525

    Article  CAS  PubMed  Google Scholar 

  29. Chang, W., Parra, M., Centrella, M., and McCarthy, T.L., Interactions between CCAAT enhancer binding protein delta and estrogen receptor alpha control insulin-like growth factor I (igf1) and estrogen receptor-dependent gene expression in osteoblasts, Gene, 2005, vol. 345, no. 2, pp. 225–235. https://doi.org/10.1016/j.gene.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  30. Turgeon, N., Valiquette, C., Blais, M., et al., Regulation of C/EBPdelta-dependent transactivation by histone deacetylases in intestinal epithelial cells, J. Cell. Biochem., 2008, vol. 103, no. 5, pp. 1573–1583. https://doi.org/10.1002/jcb.21544

    Article  CAS  PubMed  Google Scholar 

  31. Katz, B.Z., Zohar, M., Teramoto, H., et al., Tensin can induce JNK and p38 activation, Biochem. Biophys. Res. Commun., 2000, vol. 272, no. 3, pp. 717–720. https://doi.org/10.1006/bbrc.2000.2853

    Article  CAS  PubMed  Google Scholar 

  32. Chang, J., Cizmecioglu, O., Hoffmann, I., and Rhee, K., PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle, EMBO J., 2010, vol. 29, no. 14, pp. 2395–2406. https://doi.org/10.1038/emboj.2010.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K.J., Lee, Y., Rozeboom, A., et al., Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory, Neuron, 2011, vol. 69, no. 5, pp. 957–973. https://doi.org/10.1016/j.neuron.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Piccirillo, A.R., Hyzny, E.J., Beppu, L.Y., et al., The lysophosphatidylcholine transporter MFSD2A is essential for CD8+ memory T cell maintenance and secondary response to infection, J. Immunol., 2019, vol. 203, no. 1, pp. 117–126. https://doi.org/10.4049/jimmunol.1801585

    Article  CAS  PubMed  Google Scholar 

  35. Ungaro, F., Tacconi, C., Massimino, L., et al., MFSD2A promotes endothelial generation of inflammation-resolving lipid mediators and reduces colitis in mice, Gastroenterology, 2017, vol. 153, no. 5, pp. 1363–1377. e6. https://doi.org/10.1053/j.gastro.2017.07.048

  36. Straub, A.C., Lohman, A.W., Billaud, M., et al., Endothelial cell expression of haemoglobin alpha regulates nitric oxide signaling, Nature, 2012, vol. 491, no. 7424, pp. 473–477. https://doi.org/10.1038/nature11626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, C., Miloslavskaya, I., Demontis, S., et al., Regulation of cellular response to oncogenic and oxidative stress by Seladin-1, Nature, 2004, vol. 432, no. 7017, pp. 640–645. https://doi.org/10.1038/nature03173

    Article  CAS  PubMed  Google Scholar 

  38. Berge, K.E., Tian, H., Graf, G.A., et al., Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters, Science, 2000, vol. 290, no. 5497, pp. 1771–1775. https://doi.org/10.1126/science.290.5497.1771

    Article  CAS  PubMed  Google Scholar 

  39. Li, H.-X., Zhou, Y.-F., Zhao, X., et al., GATA-4 protects against hypoxia-induced cardiomyocyte injury: effects on mitochondrial membrane potential, Can. J. Physiol. Pharmacol., 2014, vol. 92, no. 8, pp. 669–678. https://doi.org/10.1139/cjpp-2014-0009

    Article  CAS  PubMed  Google Scholar 

  40. Allen, I.C., Wilson, J.E., Schneider, M., et al., NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling, Immunity, 2012, vol. 36, no. 5, pp. 742–754. https://doi.org/10.1016/j.immuni.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrante, A.W., Thearle, M., Liao, T., and Leibel, R.L., Effects of leptin deficiency and short-term repletion on hepatic gene expression in genetically obese mice, Diabetes, 2001, vol. 50, no. 10, pp. 2268–2278. https://doi.org/10.2337/diabetes.50.10.2268

    Article  CAS  PubMed  Google Scholar 

  42. Liang, C.P. and Tall, A.R., Transcriptional profiling reveals global defects in energy metabolism, lipo-protein, and bile acid synthesis and transport with reversal by leptin treatment in ob/ob mouse liver, J. Biol. Chem., 2001, vol. 276, no. 52, pp. 49066–49076.https://doi.org/10.1074/jb.M107250200

  43. Kim, S., Sohn, I., Ahn, J.I., et al., Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model, Gene, 2004, vol. 340, no. 1, pp. 99–109. https://doi.org/10.1016/j.gene.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  44. Inoue, M., Ohtake, T., Motomura, W., et al., Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice, Biochem. Biophys. Res. Commun., 2005, vol. 336, no. 1, pp. 215–222. https://doi.org/10.1016/j.bbrc.2005.08.070

    Article  CAS  PubMed  Google Scholar 

  45. Patsouris, D., Reddy, J.K., Muller, M., and Kersten, S., Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression, Endocrinology, 2006, vol. 147, no. 3, pp. 1508–1516. https://doi.org/10.1210/en.2005-1132

    Article  CAS  PubMed  Google Scholar 

  46. Yang, R.-L., Li, W., Shi, Y.-H., and Le, G.-W., Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis, Nutrition, 2008, vol. 24, no. 6, pp. 582—588.https://doi.org/10.1016/j.nut.2008.02.002

  47. Palacz-Wrobel, M., Borkowska, P., Paul-Samojedny, M., et al., Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages, Biomed. Pharmacother., 2017, vol. 93, pp. 1205–1212. https://doi.org/10.1016/j.biopha.2017.07.054

    Article  CAS  PubMed  Google Scholar 

  48. Sud’ina, G.F., Mirzoeva, O.K., Shchukin, I.A., et al., Lipoxins: study of various biosynthetic pathways, Biokhimiya (Moscow), 1991, vol. 56, no. 6, pp. 1113–1122.

    Google Scholar 

  49. Gessler, N.N., Belozerskaya, T.A., Groza, N.V., et al., Oxylipins and oxylipin synthesis pathways in fungi, Appl. Biochem. Microbiol., 2017, vol. 53, no. 6, pp. 628–639. https://doi.org/10.1134/S0003683817060060

    Article  CAS  Google Scholar 

  50. Pickens, C.A., Sordillo, L.M., Zhang, C., and Fenton, J.I., Obesity is positively associated with arachidonic acid-derived 5- and 11-hydroxyeicosatetraenoic acid (HETE), Metabolism, 2017, vol. 70, pp. 177–191. https://doi.org/10.1016/j.metabol.2017.01.034

    Article  CAS  PubMed  Google Scholar 

  51. Das, U.N., Bioactive lipids in age-related disorders, Adv. Exp. Med. Biol., 2020, vol. 1260, pp. 33–83. https://doi.org/10.1007/978-3-030-42667-5_3

    Article  CAS  PubMed  Google Scholar 

  52. Rahman, M.S., Prostacyclin: a major prostaglandin in the regulation of adipose tissue development, J. Cell Physiol., 2019, vol. 234, no. 4, pp. 3254–3262. https://doi.org/10.1002/jcp.26932

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 17-16-01043, “The Search for Effector Links of Metabolism, Regulated by Alimentary Factors in Obesity, for the Development of Innovative Specialized Food Products”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Trusov or I. V. Gmoshinski.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusov, N.V., Apryatin, S.A., Shipelin, V.A. et al. Effect of Administration of Carnitine, Resveratrol, and Aromatic Amino Acids with High-Fat-High-Fructose Diet on Gene Expression in Liver of Rats: Full Transcriptome Analysis. Russ J Genet 57, 1149–1163 (2021). https://doi.org/10.1134/S1022795421100136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421100136

Keywords:

Navigation