Skip to main content
Log in

Genome Studies by Means of DNA Markers of the Blackcurrant

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The paper provides an overview of foreign and Russian studies of the genus Ribes genome by means of DNA markers. A list of methods for DNA extraction from currants is given. Studies on the use of different types of DNA markers (RAPD, AFLP, ISSR, SSR) for genetic diversity, identification of varieties, molecular phylogeny, and systematics are represented. In the works of various research teams, a high level of polymorphism revealed by microsatellite markers is shown. Examples and prospects for their use in development of identification tools, validations of pedigrees, and collection management are represented. The paper describes genetic maps of blackcurrant developed by means of AFLP, SSR, SNP DNA markers. A list of QTL (quantitative trait loci) localized on genetic maps is represented. The published techniques for marker-assisted selection are described: DNA markers of gene Се and gene Р of blackcurrant resistance to gall mite and DNA markers of green and black color of berries. The method of gene Ce detection improved by the authors is described. Blackcurrant is the most widely studied by means of DNA markers crop of genus Ribes L. The prospects for further development of genome studies of currants and the possibilities that these studies will open for further human-directed improvement of these economically important crops are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Knyazev, S.D. and Ogol’tsova, T.P., Selektsiya smorodiny chernoi na sovremennom etape (Selection of Black Currant: State-of-the-Art), Orel: Orel Gos. Agrar. Univ., 2004.

  2. Hummer, K.E. and Barney, D., Currants, HortTechnology, 2002, vol. 12, no. 3, pp. 377—387.

    Article  Google Scholar 

  3. Malinovskii, B., 2017. https://propozitsiya.com/krasnaya-smorodina-priznana-samoy-rentabelnoy-nishevoy-yagodoy doi 10.1051/fruits/2011049 www.fruits-journal.org.

  4. Pomologiya (Pomology), vol 4: Smorodina, Kryzhovnik (Currant, Gooseberry), Sedov, E.N., Ed., Orel: Vserossiiskii Nauchno-Issledovatel’skii Institut Selektsii Plodovykh Kul’tur, 2009.

  5. Bauer, R., “True breeding” for combined resistance to leaf, bud and shoot diseases, Jugosl. Vocarstvo, 1973, vol. 7, nos. 25—26, pp. 17—19.

    Google Scholar 

  6. Chiche, J., Brown, S.C., Leclerc, J.-L., et al., Genome size, heterochromatin organization and ribosomal gene mapping in four species of Ribes, Can. J. Bot., 2003, vol. 81, pp. 1049—1057. https://doi.org/10.1139/b03-088

    Article  CAS  Google Scholar 

  7. Messinger, W., Liston, A., and Hummer, K., Ribes phylogeny as indicated by restriction-site polymorphisms of PCR-amplified chloroplast DNA, Plant Syst. Evol., 1999, vol. 217, pp. 185—195.

    Article  Google Scholar 

  8. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11—15.

    Google Scholar 

  9. Rowland, L.J. and Nguyen, B.I.N.H., Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants, BioTechniques, 1993, vol. 14(5), pp. 734—736.

    CAS  PubMed  Google Scholar 

  10. Lanham, P.G. and Brennan, R.M., Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers, J. Hortic. Sci. Biotechnol., 1999, vol. 74, pp. 361—366. https://doi.org/10.1080/14620316.1999.11511122

    Article  CAS  Google Scholar 

  11. Brennan, R., Jorgensen, L., Woodhead, M., et al., Development and characterization of SSR markers in Ribes species, Mol. Ecol., 2002, no. 2(3), pp. 327—330. https://doi.org/10.1046/j.1471-8286.2002.00233.x

    Article  CAS  Google Scholar 

  12. Russell, J.R., Bayer, M., Booth, C., et al., Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum), BMC Plant Biol., 2011, no. 11(1), p. 147. https://doi.org/10.1186/1471-2229-11-147.

    Article  CAS  Google Scholar 

  13. Milligan, B.G., Plant DNA isolation, in Molecular Genetics of Populations: Molecular Analysis of Population: a Practical Approach, Oxford, UK: IRL Press, 1992, pp. 59—68.

    Google Scholar 

  14. Weigend, M., Flowering plants: eudiocots, in Families and Genera of Vascular Plants, 2007, vol. 9, pp. 168—176.

  15. Struwe, L.M., Thiv, J.W., Kadereit, A.S.-R., et al., Saccifolium an endemic of Sierra de La Neblina on the Brazillian-Venezuelan frontier is related to a temperate alpine lineage of Gentianaceae, Harvard Pap. Bot., 1998, vol. 3, pp. 199—214.

    Google Scholar 

  16. Palmieri, L., Grando, M.S., Sordo, M., et al., Establishment of molecular markers for germplasm management in a worldwide provenance Ribes spp. collection, Plant Omics, 2013, vol. 6(3), pp. 165—174.

    Google Scholar 

  17. Puchooa, D., A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchinensis Sonn.), Afr. J. Biotechnol., 2004, vol. 3, no. 4, pp. 253—255. https://doi.org/10.5897/AJB2004.000-2046

    Article  CAS  Google Scholar 

  18. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, pp. 13—15.

    Google Scholar 

  19. Lanham, P., Brennan, R.M., Hackett, C., et al., RAPD fingerprinting of blackcurrant (Ribes nigrum L.) cultivars, Theor. Appl. Genetics., 1995, vol. 90, pp. 166—172. https://doi.org/10.1007/BF00222198

    Article  CAS  Google Scholar 

  20. Lanham, P.G., Korycinska, A., and Brennan, M., Genetic diversity within a secondary gene pool for Ribes nigrum L. revealed by RAPD and ISSR markers, J. Hortic. Sci. Biotechnol., 2000, vol. 75(4), pp. 371—375. https://doi.org/10.1080/14620316.2000.11511253

    Article  CAS  Google Scholar 

  21. Russell, J., Hackett, C., Hedley, P., et al., The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences, Mol. Breed., 2014, vol. 33(4), pp. 835—849. https://doi.org/10.1007/s11032-013-9996-8

    Article  CAS  Google Scholar 

  22. Khavkin, E.E., Molecular selection of plants: DNA technology to create new agricultural varieties, S-kh. Biol., 2003, no. 3, pp. 26—41.

  23. Chesnokov, Yu.V., DNA fingerprinting and the analysis of plant genetic diversity, S-kh. Biol., 2005, vol. 40, no. 1, pp. 20—40.

    Google Scholar 

  24. Pikunova, A.V., The use of molecular markers to assess the original breeding material of berry crops, Vestn. Orlov. Gos. Agrar. Univ., 2011, no. 3(30), pp. 29—32.

  25. Vos, P., Hogers, R., Bleeker, M., et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., vol. 23(21), pp. 4407—4414. https://doi.org/10.1093/nar/23.21.4407

    Article  CAS  Google Scholar 

  26. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, pp. 176—183. https://doi.org/10.1006/geno.1994.1151

    Article  CAS  Google Scholar 

  27. Keller-Przybylkowicz, S., Korbin, M., and Gwozdecki, J., RAPD and ISSR markers of black and green colour of blackcurrant (Ribes nigrum) fruits, J. Fruit Ornamental Plant Res., 2006, vol. 14, pp. 45—52.

    CAS  Google Scholar 

  28. Jones, C.J., Edwards, K.J., Castaglione, S., et al., Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories, Mol. Breed., 1997, vol. 3, no. 5, pp. 381—390. https://doi.org/10.1023/A:1009612517139

    Article  CAS  Google Scholar 

  29. Kalia, R.K., Rai, M.K., Kalia, S., et al., Microsatellite markers: an overview of the recent progress in plants, Euphytica, 2011, no. 177(3), pp. 309—334. https://doi.org/10.1007/s10681-010-0286-9

    Article  Google Scholar 

  30. http://www.fruitbreeding.co.uk/RibesGenomicsSSRs.asp.

  31. Brennan, R., Jorgensen, L., Hackett, C., et al., The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits, Euphytica, 2008, vol. 61, pp. 19—34. https://doi.org/10.1007/s10681-007-9412-8

    Article  CAS  Google Scholar 

  32. Cavanna, M., Marinoni, D.T., Beccaro, G.L., et al., Microsatellite-based evaluation of Ribes spp. germplasm, Genome, 2009, vol. 52, no. 10, pp. 839—848. https://doi.org/10.1139/G09-057

    Article  CAS  PubMed  Google Scholar 

  33. Antonius, K., Karhu, S., Kaldm, H., et al., Development of the Northern European Ribes core collection based on a microsatellite (SSR) marker diversity analysis, in Plant Genetic Resources: Characterization and Utilization, 2012, pp. 70—73. https://doi.org/10.1017/S1479262111000980.

    Article  Google Scholar 

  34. Pikunova, A.V., Knyazev, S.D., Bakhotskaya, A.Yu., et al., Polymorphism of microsatellite loci among black currant (Ribes nigrum L.) varieties from the collection of All-Russian Research Institute for Fruit Crops Selection, S-kh. Biol., 2015, vol. 50, no. 1, pp. 46—54. https://doi.org/10.15389/agrobiology.2015.1.46rus

    Article  Google Scholar 

  35. Gaevskii, N.A., Znakomstvo s evolyutsionnoi genetikoi (Knowledge of Evolutionary Genetics), Krasnoyarsk, 2002.

  36. Reim, S., Flachowsky, H., Hanke, M.V., et al., Verifying the parents of the Pillnitzer apple cultivars, Acta Hortic., 2009, vol. 814, pp. 319—323. https://doi.org/10.17660/ActaHortic.2009.814.50

  37. Mezhnina, O.A., Assessment of genetic diversity and the development of methods for the DNA-identification of varieties and species of Fragaria L. and Ribes L., Extended Abstract of Cand. Sci. Dissertation, 2017, p. 25.

  38. Burnes, T.A., Blanchette, R.A., Smith, J.A., et al., Black currant clonal identity and white pine blister rust resistance, HortScience, 2008, vol. 43(1), pp. 200—202.

    Article  Google Scholar 

  39. Rehder, A., Manual of Cultivated Trees and Shrubs, Toronto: MacMillan, 1954.

    Google Scholar 

  40. Keep, E., Interspecific hybridization in Ribes, Genetica, 1962, vol. 33, pp. 1—23.

    Article  CAS  Google Scholar 

  41. Coville, F.V. and Britton, N.L., Grossulariaceae, in North American Flora, 1908, vol. 22, pp. 193—225.

    Google Scholar 

  42. Berger, A., A taxonomic review of currants and gooseberries, N.Y. Agric. Exp. Sta. Techn. Bull., 1924, vol. 109, pp. 1—118.

    Google Scholar 

  43. Komarov, V.L., Ribesioideae Engl., in Flora of the (Former) USSR, London: Keter, 1971, vol. 9, pp. 175—208.

    Google Scholar 

  44. Brennan, R.M., Currants and gooseberries, in Temperate Fruit Crop Breeding, Dordrecht: Springer-Verlag, 2008, pp. 177—196.

    Google Scholar 

  45. Janczewski, E., Monograph of the currants Ribes L., Mem. Soc. Phys. Hist. Nat. Geneve, 1907, vol. 35, pp. 199—517.

    Google Scholar 

  46. Sinnott, Q.P., A revision of Ribes L. subg. Grossularia (Mill.) per. Sect. Grossularia (Mill.) Nutt. (Grossulariaceae) in North America, Rhodora, 1985, vol. 87, pp. 189—286.

    Google Scholar 

  47. Eremin, G.V., Isachkin, A.V, Kazakov, I.V., et al., Obshchaya selektsiya i sortovedenie plodovykh i yagodnykh kul’tur (General Selection and Obtaining Varieties of Fruit and Berry Crops), Moscow: Mir, 2004.

  48. Samigullina, N.S., Praktikum po selektsii i sortovyvedeniyu plodovykh i yagodnykh kul’tur: uchebnoe izdanie (A Practical Course in Breeding and Obtaining Varieties of Fruit and Berry Crops: a Textbook), Michurinsk: Michurin. Gos. Univ., 2006.

  49. Schultheis, L.M. and Donoghue, M.J., Molecular phylogeny and biogeography of Ribes (Grossularia) with an emphasis of gooseberry (subg. Grossularia), Syst. Bot., 2004, vol. 29, no. 1, pp. 77—96. https://doi.org/10.1600/036364404772974239

    Article  Google Scholar 

  50. Senters, A.E. and Soltis, D.E., Phylogenetic relationships in Ribes (Grossulariaceae) inferred from ITS sequence data, Taxon, 2003, vol. 52, pp. 51—66.

    Article  Google Scholar 

  51. http://www.ncbi.nlm.nih.gov/nuccore.

  52. Mazeikiene, I., Bendokas, V., Stanys, V., et al., Molecular markers linked to resistance to the gall mite in blackcurrant, Plant Breed., 2012, vol. 131(6), pp. 762—766. https://doi.org/10.1111/j.1439-0523.2012.01995.x

    Article  CAS  Google Scholar 

  53. Hackett, C.A., Russell, J., Jorgensen, L., et al., Multi-environment QTL mapping in blackcurrant (Ribes nigrum L.) using mixed models, Theor. Appl. Genet., 2010, vol. 121(8), pp. 1483—1488. https://doi.org/10.1007/s00122-010-1404-8

    Article  CAS  PubMed  Google Scholar 

  54. Ogol’tsova, T.P., Selektsiya chernoi smorodiny—proshloe, nastoyashchee, budushchee, (Blackcurrant Selection—Past, Present, Future), Tula: Priokskoe Knizhnoe Izd., 1992.

  55. Keep, E., Breeding for resistance to American gooseberry mildew, Sphaerotheca mors-uvae, in the gooseberry (Ribes grossularia), Ann. Appl. Biol., 1974, vol. 76(1). 131—135. https://doi.org/10.1111/j.1744-7348.1974.tb01363.x

    Article  Google Scholar 

  56. Collard, B.C., Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 557—572. https://doi.org/10.1098/rstb.2007.2170

    Article  Google Scholar 

  57. Francia, E., Marker assisted selection in crop plants, Plant Cell. Tissue Organ Cult., 2005, vol. 82, pp. 317—342. https://doi.org/10.1007/s11240-005-2387-z

    Article  CAS  Google Scholar 

  58. Brennan, R., Jorgensen, L., Gordon, S.L., et al., The development of a PCR-based marker linked to resistance to the blackcurrant gall mite (Cecidophyopsis ribis Acari: Eriophyidae), Theor. Appl. Genet., 2009, vol. 118, pp. 205—211. https://doi.org/10.1007/s00122-008-0889-x

    Article  CAS  PubMed  Google Scholar 

  59. Anderson, M.M., Resistance to gall mite (Phytoptus ribes Nal.) in the Eucorcosma section of Ribes, Euphytica, 1971, vol. 20, pp. 422—426.

    Article  Google Scholar 

  60. Knight, R.L., Transference of resistance to black currant gall mite Cecidophyopsis ribis from gooseberry to black currant, Ann. Appl. Biol., 1974, vol. 76, pp. 123—130. https://doi.org/10.1111/j.1744-7348.1974.tb01362.x

    Article  Google Scholar 

  61. Mazeikiene, I., Bendokas, V., Baniulis, D., et al., Genetic background of resistance to gall mite in Ribes species, Agric. Food Sci., 2017, vol. 26(2), pp. 111—117. https://doi.org/10.23986/afsci.59410

    Article  Google Scholar 

  62. Pikunova, A.V., Genetic diversity assessment in the source and breeding material of berry cultures using molecular markers, Cand. Sci. (Biol.) Dissertation, 2011, p. 148.

  63. Shavyrkina, M.A., Knyazev, S.D., and Pikunova, A.V. Molecular genetic methods for the selection of blackcurrant genotypes resistance to the blackcurrant gall mite (Cecidophyopsis ribis), Sovrem. Sadovod., 2015, no. 4(16), pp. 31—35.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-76-0032, “Study of Currant Genome (Ribes L.) with DNA Markers.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pikunova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The present article does not contain any studies carried out on animals as objects.

The present article does not contain any studies carried out on people as objects.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

Additional information

Translated by M. Bibov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikunova, A.V., Knyazev, S.D., Golyaeva, O.D. et al. Genome Studies by Means of DNA Markers of the Blackcurrant. Russ J Genet 55, 1061–1071 (2019). https://doi.org/10.1134/S1022795419090102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419090102

Keywords:

Navigation