Skip to main content
Log in

An Analysis of the Associations of Polymorphic Variants of the LEPR (rs1137100), LRP5 (rs3736228), and LPL (rs320) Genes with the Risk of Developing Type 2 Diabetes Mellitus

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a hereditary predisposed multifactorial disease. However, the genetic mechanisms of its development have not been fully revealed yet. We conducted a search for associations of polymorphic variants of the LEPR (rs1137100), LRP5 (rs3736228), and LPL (rs320) genes involved in the development of obesity with the development of type 2 diabetes mellitus. The association with development of the disease was established for the T allele of the LRP5 locus (rs3736228) (p = 0.029, OR = 1.46). The rs1137100 locus (p = 0.032) of the LEPR gene was shown to be associated with the body mass index (BMI), but it was not connected with the presence of type 2 diabetes mellitus. Risk markers of development of type 2 diabetes included the T allele of the rs3736228 locus of the LRP5 gene (OR = 1.74, p = 0.012) and the G allele of the rs320 locus of the LPL gene (OR = 1.39, p = 0.027). Statistically significant association was only found in the group of nonobese patients. A decrease in the level of low-density lipoprotein was observed in individuals with the TT genotype of the LPL locus (rs320) (p = 0.04). Individuals with the GT and GG genotypes of this locus had a lower cholesterol level (p = 0.027). A decrease in the level of BMI (p = 0.012) and a decrease in the concentration of triglycerides in the blood (p = 0.00000004) were detected in carriers of the CC genotype of the LRP5 rs3736228 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dedov, I.I., Shestakova, M.V., and Suntsov, Yu.I., Sakharnyi diabet v Rossii: problemy i resheniya (Diabetes in Russia: Problems and Solutions), Moscow, 2008.

  2. Belousova, O.N., Sirotina, S.S., Yakunchenko, T.I., and Zhernakova, N.I., Molecular and genetic mechanisms of the pathogenesis of type 2 diabetes, Nauch. Vedomosti Belgorod. Gos. Univ., Ser. Med. Farm., 2015, vol. 31, no. 16, p. 213.

    Google Scholar 

  3. Oswal, A. and Yeo, G., Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity, Obesity, 2010, vol. 18, no. 2, pp. 221—229. https://doi.org/10.1038/oby.2009.228

    Article  PubMed  Google Scholar 

  4. Winick, J.D., Stoffel, M., and Friedman, J.M., Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1, Genomics, 1996, vol. 36, no. 1, pp. 221—222. https://doi.org/10.1006/geno.1996.0455

    Article  CAS  PubMed  Google Scholar 

  5. Emilsson, V., Liu, Y.L., and Cawthorne, M.A., Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion, Diabetes, 1997, vol. 46, no. 2, pp. 313—316. https://doi.org/10.2337/diab.46.2.313

    Article  CAS  PubMed  Google Scholar 

  6. Foer, D., Zhu, M., Cardone, R.L., et al., Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis, Osteoporosis Int., 2017, vol. 28, no. 6, pp. 2011—2017. https://doi.org/10.1007/s00198-017-3977-4

    Article  CAS  Google Scholar 

  7. Guo, Y.F., Xiong, D.H., Shen, H., Zhao, L.J., et al., Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study, J. Med. Genet., 2006, vol. 43, no. 10, pp. 798—803. https://doi.org/10.1590/S0100-879X2000001100006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho, Y.S., Go, M.J., Han, H.R., et al., Association of lipoprotein lipase (LPL) single nucleotide polymorphisms with type 2 diabetes mellitus, Exp. Mol. Med., 2008, vol. 40, no. 5, p. 523. https://doi.org/10.3858/emm.2008.40.5.523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahn, Y.I., Kamboh, M.I., Hamman, R.F., et al., Two DNA polymorphisms in the lipoprotein lipase gene and their associations with factors related to cardiovascular disease, J. Lipid Res., 1993, vol. 34, no. 3, pp. 421—428.

    CAS  PubMed  Google Scholar 

  10. Goodarzi, M.O., Guo, X., Taylor, K.D., et al., Lipoprotein lipase is a gene for insulin resistance in Mexican Americans, Diabetes, 2004, vol. 53, no. 1, pp. 214—220. https://doi.org/10.2337/diabetes.53.1.214

    Article  CAS  PubMed  Google Scholar 

  11. Trofimova, N.V., Litvinov, S.S., Khusainova, R.I., et al., Genetic characteristic of the Volga Tatars based on uniparental markers, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2013, no. 15, pp. 3—5.

  12. Purcell, S., Neale, B., Todd-Brown, K., et al., PLINK: a toolset for whole genome association and population based linkage analysis, Am. J. Hum. Genet., 2007, vol. 81, no. 3, pp. 559—575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Statistica v. 6.0 Program, StatSoft. http:// www.statistica.com.

  14. Xuan, M., Wang, Y., Wang, W., et al., Association of LRP5 gene polymorphism with type 2 diabetes mellitus and osteoporosis in postmenopausal women, Int. J. Clin. Exp. Med., 2014, vol. 7, no. 1, p. 247.

    PubMed  PubMed Central  Google Scholar 

  15. Ariza, M.J. Sánchez-Chaparro, M.Á., Barón, F.J., et al., Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study, BMC Med. Genet., 2010, vol. 11, no. 1, p. 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujino, T., Asaba, H., Kang, M.J., et al., Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 1, pp. 229—234. https://doi.org/10.1073/pnas.0133792100

    Article  CAS  PubMed  Google Scholar 

  17. Magoori, K., Kang, M.J., Ito, M.R., et al., Severe hypercholesterolemia, impaired fat tolerance, and advanced atherosclerosis in mice lacking both low density lipoprotein receptor-related protein 5 and apolipoprotein E, J. Biol. Chem., 2003, vol. 278, no. 13, pp. 11331—11336. https://doi.org/10.1074/jbc.M211987200

    Article  CAS  PubMed  Google Scholar 

  18. Borrell-Pagès, M., Romero, J.C., Badimon, L., LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice, J. Cell. Mol. Med., 2015, vol. 19, no. 4, pp. 770—777. https://doi.org/10.1111/jcmm.12396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rip, J., Nierman, M.C., Ross, C.J., et al., Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation, Arterioscler., Thromb., Vasc. Biol., 2006, vol. 26, no. 6, pp. 1236—1245. https://doi.org/10.1161/01.ATV.0000219283.10832.43

    Article  CAS  Google Scholar 

  20. Javorský, M., Gašperíková, D., Ukropec, J., et al., Lipoprotein lipase HindIII polymorphism influences HDL-cholesterol levels in statin-treated patients with coronary artery disease, Wiener Klin. Wochenschrift, 2007, vol. 119, nos. 15—16, pp. 476—482. https://doi.org/10.1007/s00508-007-0824-1

    Article  CAS  Google Scholar 

  21. Vardarl, A.T., Harman, E., Çetintaş, V.B., et al., Polymorphisms of lipid metabolism enzyme-coding genes in patients with diabetic dyslipidemia, Anatolian J. Cardiol., 2017, vol. 17, no. 4, p. 313. https://doi.org/10.14744/AnatolJCardiol.2.7142

    Article  Google Scholar 

  22. He, T., Wang, J., Deng, W.S., and Sun, P., Association between lipoprotein lipase polymorphism and the risk of stroke: a meta-analysis, J. Stroke Cerebrovasc. Dis., 2017, vol. 26, no. 11, pp. 2570—2578. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.003

    Article  PubMed  Google Scholar 

  23. Munshi, A., Babu, M.S., Kaul, S., et al., Association of LPL gene variant and LDL, HDL, VLDL cholesterol and triglyceride levels with ischemic stroke and its subtypes, J. Neurol. Sci., 2012, vol. 31, no. 1, pp. 51—54. https://doi.org/10.1016/j.jns.2012.04.006

    Article  CAS  Google Scholar 

  24. Bushueva, O.Yu., Stetskaya, T.A., Korogodina, T.V., et al., Study of the interrelationship between the HindIII polymorphisms of the LPL gene and the Taq1b CETP gene with the risk of atherothrombotic stroke in Central Russia, Ther. Arkh., 2015, vol. 87, no. 8, pp. 86—91. https://doi.org/10.17116/terarkh201587886-91

    Article  Google Scholar 

  25. Yang, Y. and Niu, T., A meta-analysis of associations of LEPR Q223R and K109R polymorphisms with type 2 diabetes risk, PLoS One, 2018, vol. 13, no. 1. e0189366. https://doi.org/10.1371/journal.pone.0189366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, Q., Cornelis, M.C., Kraft, P., et al., Genome-wide association study identifies polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels, Hum. Mol. Genet., 2010, vol. 19, no. 9, pp. 1846—1855. https://doi.org/10.1093/hmg/ddq056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dolgushina, N.V., Desyatkova, N.V., and Donnikov, A.E., et al., The role of adipokines and adipokin regulator genes in the effectiveness of assisted reproductive technology programs in overweight patients, Akush. Ginekol., 2017, vol. 2, pp. 71—78. https://dx.doi.org/.https://doi.org/10.18565/aig.2017.2.71-8

    Article  Google Scholar 

  28. Rosmond, R., Chagnon, Y.C., Holm, G., et al., Hypertension in obesity and the leptin receptor gene locus, J. Clin. Endocrinol. Metab., 2000, vol. 85, no. 9, pp. 3126—3131. https://doi.org/10.1210/jcem.85.9.6781

    Article  CAS  PubMed  Google Scholar 

  29. Okada, T., Ohzeki, T., Nakagawa, Y., et al., Impact of leptin and leptin-receptor gene polymorphisms on serum lipids in Japanese obese children, Acta Pædiatr., 2010, vol. 99, no. 8, pp. 1213—1217. https://doi.org/10.1111/j.1651-2227.2010.01778.x

    Article  CAS  PubMed  Google Scholar 

  30. Hollensted, M., Ahluwalia, T.S., Have, C.T., et al., Common variants in LEPR, IL6, AMD1, and NAMPT do not associate with risk of juvenile and childhood obesity in Danes: a case–control study// BMC Med. Genet., 2015, vol. 16, no. 1, p. 105. https://doi.org/10.1186/s12881-015-0253-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported in part by the Russian Foundation for Basic Research, project no. 18-015-00050 and the Ministry of Science and Higher Education of the Russian Federation № АААА-А16-116020350032-1. Biological material (DNA) for the study was taken from the collection “Collection of Human Biological Materials IBG USC RAS” IBG USC RAS, supported by the program of bio-resource collections FANO Russia (agreement no. 007-030164/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kochetova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study was approved by the Ethics Committee of the Institute of Biochemistry and Genetics. All participants in the study gave their informed voluntary consent to the use of the biological material.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetova, O.V., Avzaletdinova, D.S., Sharipova, L.F. et al. An Analysis of the Associations of Polymorphic Variants of the LEPR (rs1137100), LRP5 (rs3736228), and LPL (rs320) Genes with the Risk of Developing Type 2 Diabetes Mellitus. Russ J Genet 55, 495–503 (2019). https://doi.org/10.1134/S1022795419040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419040057

Keywords:

Navigation