Skip to main content
Log in

Comparative Analyses of Genetic Variation in a Tomato (Solanum lycopersicum L.) Germplasm Collection with Single Nucleotide Polymorphism and Insertion-Deletion Markers

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Estimation of genetic diversity and relative relatedness in breeding materials is critical for improving breeding efficiency. To compare the ability of single nucleotide polymorphism (SNP) and insertion-deletion (InDel) markers for characterizing cultivated tomato germplasm, 120 SNPs and 109 InDels were used to genotype 191 tomato inbred lines representing cherry tomato, traditional varieties, and contemporary lines. The results showed that SNPs provided more information on genetic diversity than the InDels. The expected heterozygosity (He) of SNPs and InDels averaged 0.384 and 0.265, respectively, and the polymorphic information content (PIC) of these two markers was 0.302 and 0.221, respectively. Except for the cherry tomato group, the traditional group showed higher He and PIC for the SNP data, and the contemporary group had the higher InDel diversity. Population structure analysis revealed that the traditional varieties constituted distinct subpopulations relative to the contemporary lines with both marker systems, and three subpopulations were found within the traditional group with SNPs. Additionally, SNPs provided more resolution in discriminating the closely related tomato lines, and InDels may be more effective at resolving genotypes from an inter-gene pool. A lower correlation (R = 0.4155) was found between SNPs and InDels based on the genetic distances among accessions. The present study systematically compares the performance of SNP and InDel markers for population genetics analysis in cultivated tomato. These results contribute to the choice of molecular marker type for analysis of genetic diversity and other genetic studies in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Menda, N., Semel, Y., Peled, D., et al., In silico screening of a saturated mutation library of tomato, Plant J., 2004, vol. 38, no. 5, pp. 861—872.

    Article  CAS  PubMed  Google Scholar 

  2. Shirasawa, K. and Hirakawa, H., DNA marker applications to molecular genetics and genomics in tomato, Breed. Sci., 2013, vol. 63, no. 1, pp. 21—30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Archak, S., Karihaloo J.L., and Jain, A., RAPD markers reveal narrowing genetic base of Indian tomato cultivars, Curr. Sci., 2002, vol. 82, no. 9, pp. 1139—1143.

    Google Scholar 

  4. Mazzucato, A., Papa, R., Bitocchi, E., et al., Genetic diversity, structure and marker—trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces, Theor. Appl. Genet., 2008, vol. 116, no. 5, pp. 657—669.

    Article  PubMed  Google Scholar 

  5. Sim, S.C., Van Deynze, A., Stoffel, K., et al., High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding, PLoS One, 2012, vol. 7, no. 9. e45520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corrado, G., Piffanelli, P., Caramante, M., et al., SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato, BMC Genomics, 2013, vol. 14, p. 835.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miller, J.C. and Tanksley, S.D., RFLP analysis of phylogenetic relationships and genetic variation in the genus, Theor. Appl. Genet., 1990, vol. 80, no. 4, pp. 437—448.

    Article  CAS  PubMed  Google Scholar 

  8. Park, Y.H., West, M.A., and St Clair, D.A., Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.), Genome, 2004, vol. 47, no. 3, pp. 510—518.

    Article  CAS  PubMed  Google Scholar 

  9. Ranc, N., Munos, S., Santoni, S., et al., A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae), BMC Plant Biol., 2008, vol. 8, p. 130.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen, J., Wang, H., Shen, H., et al., Genetic variation in tomato populations from four breeding programs revealed by single nucleotide polymorphism and simple sequence repeat markers, Sci. Hortic., 2009, vol. 122, no. 1, pp. 6—16.

    Article  CAS  Google Scholar 

  11. Bai, Y. and Lindhout, P., Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?, Ann. Bot., 2007, vol. 100, no. 5, pp. 1085—1094.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frary, A., Xu, Y., Liu, J., et al., Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments, Theor. Appl. Genet., 2005, vol. 111, no. 2, pp. 291—312.

    Article  CAS  PubMed  Google Scholar 

  13. Tomato Genome Consortium, The tomato genome sequence provides insights into fleshy fruit evolution, Nature, 2012, vol. 485, no. 7400, pp. 635—641.

  14. Yang, W., Bai, X., Kabelka, E., et al., Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags, Mol. Breed., 2004, vol. 14, no. 1, pp. 21—34.

    Article  CAS  Google Scholar 

  15. Jiménez Gómez, J.M. and Maloof, J.N., Sequence diversity in three tomato species: SNPs, markers, and molecular evolution, BMC Plant Biol., 2009, vol. 9, p. 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sim, S.C., Robbins, M.D., Chilcott, C., et al., Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding, BMC Genomics, 2009, vol. 10, p. 466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton, J.P., Sim, S.C., Stoffel, K., et al., Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis, Plant Genome, 2012, vol. 5, no. 1, pp. 17—29.

    Article  CAS  Google Scholar 

  18. Lin, T., Zhu, G.T., Zhang, J.H., et al., Genomic analyses provide insights into the history of tomato breeding, Nat. Genet., 2014, vol. 46, no. 11, pp. 1220–1228.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J., Wang, Y., Shen, H., et al., In silico identification and experimental validation of insertion—deletion polymorphisms in tomato genome, DNA Res., 2014, vol. 21, no. 4, pp. 429—438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tam, S.M., Mhiri, C., Vogelaar, A., et al., Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR, Theor. Appl. Genet., 2005, vol. 110, no. 5, pp. 819—831.

    Article  CAS  PubMed  Google Scholar 

  21. Frascaroli, E., Schrag, T.A., and Melchinger, A.E., Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs, Theor. Appl. Genet., 2013, vol. 126, no. 1, pp. 133—141.

    Article  PubMed  Google Scholar 

  22. Filippi, C.V., Aguirre, N., Rivas, J.G., et al., Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers, BMC Plant Biol., 2015, vol. 15, p. 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Müller, B.S.F., Pappas G.J. Jr., Valdisser, P.A.M.R., et al., An operational SNP panel integrated to SSR marker for the assessment of genetic diversity and population structure of the common bean, Plant Mol. Biol. Rep., 2015, vol. 33, no. 6, pp. 1697—1711.

    Article  CAS  Google Scholar 

  24. Wang, T., Zou, Q.D., Qi, S.Y., et al., Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers, Genet. Mol. Res., 2016, vol. 15.

  25. Shirasawa, K., Isobe, S., Hirakawa, H., et al., SNP discovery and linkage map construction in cultivated tomato, DNA Res., 2010, vol. 17, no. 6, pp. 381—391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Deynze, A., Stoffel, K., Buell, C.R., et al., Diversity in conserved genes in tomato, BMC Genomics, 2007, vol. 8, p. 465.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stewart, C.N., Jr. and Via, L.E., A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications, Biotechniques, 1993, vol. 14, no. 5, pp. 748—750.

    CAS  PubMed  Google Scholar 

  28. Chang, H.W., Cheng, Y.H., Chuang, L.Y., et al., SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping, BMC Bioinf., 2010, vol. 11, p. 173.

    Article  CAS  Google Scholar 

  29. Ge, Y., Ramchiary, N., Wang, T., et al., Development and linkage mapping of unigene-derived microsatellite markers in Brassica rapa L., Breed. Sci., 2011, vol. 61, no. 2, pp. 160—167.

    Article  Google Scholar 

  30. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, vol. 28, no. 19, pp. 2537—2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, K. and Muse, S.V., PowerMarker: an integrated analysis environment for genetic marker analysis, Bioinformatics, 2005, vol. 21, no. 9, pp. 2128—2129.

    Article  CAS  PubMed  Google Scholar 

  32. Pritchard, J.K., Stephens, M. and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945—959.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611—2620.

    Article  CAS  PubMed  Google Scholar 

  34. Corrado, G., Caramante, M., Piffanelli, P., et al., Genetic diversity in Italian tomato landraces: implications for the development of a core collection, Sci. Hortic., 2014, vol. 168, pp. 138—144.

    Article  Google Scholar 

  35. Sim, S.C., Robbins, M.D., Van Deynze, A., et al., Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.), Heredity, 2011, vol. 106, no. 6, pp. 927—935.

    Article  CAS  PubMed  Google Scholar 

  36. Hamblin, M.T., Warburton, M.L., and Buckler, E.S., Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness, PLoS One, 2007, vol. 12, no. 12. e1367.

    Article  CAS  Google Scholar 

  37. Wurschum, T., Langer, S.M., Longin, C.F., et al., Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers, Theor. Appl. Genet., 2013, vol. 126, no. 6, pp. 1477—1486.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, X., Xu, Y., Shah, T., et al., Comparison of SSRs and SNPs in assessment of genetic relatedness in maize, Genetica, 2011, vol. 139, no. 8, pp. 1045—1054.

    Article  CAS  PubMed  Google Scholar 

  39. Rick, C.M. and Fobes, J.F., Allozyme variation in the cultivated tomato and closely related species, Bull. Torrey Bot. Club, 1975, vol. 102, no. 6, pp. 376—384.

    Article  Google Scholar 

  40. Moragues, M., Comadran, J., Waugh, R., et al., Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data, Theor. Appl. Genet., 2010, vol. 120, no. 8, pp. 1525—1534.

    Article  CAS  PubMed  Google Scholar 

  41. Causse, M., Desplat, N., Pascual, L., et al., Whole genome resequencing in tomato reveals variation associated with introgression and breeding events, BMC Genomics, 2013, vol. 14, p. 791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varshney, R.K., Baum, M., Guo, P., et al., Features of SNP and SSR diversity in a set of ICARDA barley germplasm collection, Mol. Breed., 2010, vol. 26, no. 2, pp. 229—242.

    Article  CAS  Google Scholar 

  43. Jones, E.S., Sullivan, H., Bhattramakki, D., et al., A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.), Theor. Appl. Genet., 2007, vol. 115, no. 3, pp. 361—371.

    Article  CAS  PubMed  Google Scholar 

  44. Varshney, R.K., Thiel, T., Sretenovic Rajicic, T., et al., Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley, Mol. Breed., 2007, vol. 22, no. 1, pp. 1—13.

    Article  CAS  Google Scholar 

  45. Woodhead, M., Russell, J., Squirrell, J., et al., Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions, Mol. Ecol., 2010, vol. 14, no. 6, pp. 1681—1695.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (2017YFD0101902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. J. Zhang or Q. D. Zou.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, H.T., Zhu, H. et al. Comparative Analyses of Genetic Variation in a Tomato (Solanum lycopersicum L.) Germplasm Collection with Single Nucleotide Polymorphism and Insertion-Deletion Markers. Russ J Genet 55, 204–211 (2019). https://doi.org/10.1134/S1022795419020182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419020182

Keywords:

Navigation