Skip to main content
Log in

Study of the transcriptional and transpositional activities of the Tirant Retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Transpositions of the gypsy retrotransposon in the Drosophila melanogaster genome are controlled by the flamenco locus, which is represented as an accumulation of defective copies of transposable elements. In the present work, genetic control by the flamenco locus of the transcriptional and transpositional activities of the Tirant retrotransposon from the gypsy group was studied. Tissue-specific expression of Tirant was detected in the tissues of ovaries in a strain mutant for the flamenco locus. Tirant was found to be transpositionally active in isogenic D. melanogaster strains mutant for the flamenco locus. The sites of two new insertions have been localized by the method of subtractive hybridization. It has been concluded from the results obtained that the flamenco locus is involved in the genetic control of Tirant transpositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, A., Terzian, C., Santamaria, P., et al., Retroviruses in Invertebrates: The gypsy Retrotransposon Is Apparently an Infectious Retrovirus of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 4, pp. 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  2. Leblanc, P., Desset, S., Giorgi, F., et al., Life Cycle of an Endogenous Retrovirus, ZAM, in Drosophila melanogaster, J. Virol., 2000, vol. 22, pp. 10658–10669.

    Article  Google Scholar 

  3. Kaminker, J.S., Bergman, C.M., Kronmiller, B., et al., The Transposable Elements of the Drosophila melanogaster Euchromatin: A Genomics Perspective, Genome Biol., 2002, vol. 3, no. 12, research0084.

  4. Nefedova, L.N. and Kim, A.I., Molecular Phylogeny and Systematics of Drosophila Retrotransposons and Retroviruses, Mol. Biol. (Moscow), 2009, vol. 43, no. 5, pp. 807–817.

    Article  CAS  Google Scholar 

  5. Prud’homme, N., Gans, M., Masson, M., et al., Flamenco, a Gene Controlling the gypsy Retrovirus of Drosophila melanogaster, Genetics, 1995, vol. 139, no. 2, pp. 697–711.

    PubMed  Google Scholar 

  6. Brennecke, J., Aravin, A.A., Stark, A., et al., Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila, Cell, 2007, vol. 128, no. 6, pp. 1089–1103.

    Article  PubMed  CAS  Google Scholar 

  7. Malone, C.D., Brennecke, J., Dus, M., et al., Specialized piRNA Pathways pct in Germline and Somatic Tissues of the Drosophila Ovary, Cell, 2009, vol. 137, no. 3, pp. 522–535.

    Article  PubMed  CAS  Google Scholar 

  8. Plisson, A., Song, S.U., Prud’homme, N., et al., Gypsy Transposition Correlates with the Production of a Retroviral Envelope-Like Protein under the Tissue-Specific Control of the Drosophila flamenco Gene, EMBO J., 1994, vol. 13, no. 18, pp. 4401–4411.

    Google Scholar 

  9. Desset, S., Meignin, C., Dastugue, B., and Vaury, C., COM, a Heterochromatic Locus Governing the Control of Independent Endogenous Retroviruses from Drosophila melanogaster, Genetics, 2003, vol. 164, no. 2, pp. 501–509.

    PubMed  CAS  Google Scholar 

  10. Kim, A.I., Lyubomirskaya, N.V., Belyaeva, E.S., et al., The Introduction of a Transpositionally Active Copy of Retrotransposon gypsy into the Stable Strain of Drosophila melanogaster Causes Genetic Instability, Mol. Gen. Genet., 1994, vol. 242, no. 4, pp. 472–477.

    Article  PubMed  CAS  Google Scholar 

  11. Mamedov, I.Z., Arzumanyan, E.S., Amosova, A.L., et al., Whole-Genome Experimental Identification of Insertion/Deletion Polymorphisms of Interspersed Repeats by a New General Approach, Nucleic Acids Res., 2005, vol. 33, no. 2, e16.

    Article  PubMed  Google Scholar 

  12. Lécher, P., Bucheton, A., and Pélisson, A., Expression of the Drosophila Retrovirus gypsy as Ultrastructurally Detectable Particles in the Ovaries of Flies Carrying a Permissive flamenco Allele, J. Gen. Virol., 1997, vol. 78, pp. 2379–2388.

    PubMed  Google Scholar 

  13. Tcheressiz, S., Calco, V., Arnaud, F., et al., Expression of the Idefix Retrotransposon in Early Follicle Cells in the Germarium of Drosophila melanogaster Is Determined by Its LTR Sequences and a Specific Genomic Context, Mol. Genet. Genomics, 2002, vol. 267, no. 2, pp. 133–141.

    Article  PubMed  CAS  Google Scholar 

  14. Matyunina, L.V., Jordan, I.K., and McDonald, J.F., Naturally Occurring Variation in copia Expression Is Due to Both Element (cis) and Host (trans) Regulatory Variatio, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 14, pp. 7097–7102.

    Article  PubMed  CAS  Google Scholar 

  15. Gdula, D.A., Gerasimova, T.I., and Corces, V.G., Genetic and Molecular Analysis of the gypsy Chromatin Insulator of Drosophila, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 18, pp. 9378–9383.

    Article  PubMed  CAS  Google Scholar 

  16. Minervini, C.F., Ruggieri, S., Traversa, M., et al., Evidences for Insulator Activity of the 5′UTR of the Drosophila melanogaster LTR-Retrotransposon ZAM, Mol. Genet. Genomics, 2010, vol. 283, no. 5, pp. 503–509.

    Article  PubMed  CAS  Google Scholar 

  17. Fablet, M. McDonald, J.F., Biermont, C., and Vieira, C., Ongoing Loss of the tirant Transposable Element in Natural Populations of Drosophila simulans, Gene, 2006, vol. 375, pp. 54–62.

    Article  PubMed  CAS  Google Scholar 

  18. Minervini, C.F., Marsano, R.M., Casieri, P., et al., Heterochromatin Protein 1 Interacts with 5′UTR of Transposable Element ZAM in a Sequence-Specific Fashion, Gene, 2007, vol. 393, nos. 1–2, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  19. Marsano, R.M., Moschetti, R., Caggese, C., et al., The Complete tirant Transposable Element in Drosophila melanogaster Shows a Structural Relationship in Retrovirus-Like Retrotransposons, Gene, 2000, vol. 247, pp. 87–95.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, A.I., Belyaeva, E.S., Larkina, Z.G., and Aslanyan, M.M., Genetic Instability and the Transposition of Mobile Element MGE4 in the Drosophila melanogaster Mutator Line, Genetika (Moscow), 1989, vol. 25, no. 10, pp. 1747–1756.

    CAS  Google Scholar 

  21. Mevel-Ninio, M., Pelisson, A., Kinder, J., et al., The flamenco Locus Controls the gypsy and ZAM Retroviruses and Is Required for Drosophila Oogenesis, Genetics, 2007, vol. 175, no. 4, pp. 1615–1624.

    Article  PubMed  CAS  Google Scholar 

  22. Akkouche, A., Rebollo, R., Burlet, N., et al., Tirant, a Newly Discovered Active Endogenous Retrovirus in Drosophila simulans, J. Virol., 2012, vol. 86, no. 7, pp. 3675–3681.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kim.

Additional information

Original Russian Text © L.N. Nefedova, F.A. Urusov, N.I. Romanova, A.O. Shmel’kova, A.I. Kim, 2012, published in Genetika, 2012, Vol. 48, No. 11, pp. 1271–1279.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nefedova, L.N., Urusov, F.A., Romanova, N.I. et al. Study of the transcriptional and transpositional activities of the Tirant Retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus. Russ J Genet 48, 1089–1096 (2012). https://doi.org/10.1134/S1022795412110063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412110063

Keywords

Navigation