Skip to main content
Log in

Mismatch repair (MMR) efficiency and MSH2 gene mutation in human colorectal carcinoma cell line COLO320HSR

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghadimi, B.M., Sackett, D.L., Difilippantonio, M.J., et al., Centrosome Amplification and Instability Occurs Exclusively in Aneuploid, but not in Diploid Colorectal Cancer Cell Lines, and Correlates with Numerical Chromosomal Aberrations, Genes Chromosomes Cancer, 2000, vol. 27, pp. 183–190.

    Article  PubMed  CAS  Google Scholar 

  2. Abdel-Rahman, W.M., Katsura, K., Rens, W., et al., Spectral Karyotyping Suggests Additional Subsets of Colorectal Cancers Characterized by Pattern of Chromosome Rearrangement, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 2538–2543.

    Article  PubMed  CAS  Google Scholar 

  3. Ribas, M., Masramon, L., Aiza, G., et al., The Structural Nature of Chromosomal Instability in Colon Cancer Cells, FASEB J., 2003, vol. 17, pp. 289–291.

    PubMed  CAS  Google Scholar 

  4. Lengauer, C., Kinzler, K.W., and Vogelstein, B., Genetic Instability in Colorectal Cancers, Nature, 1997, vol. 386, pp. 623–627.

    Article  PubMed  CAS  Google Scholar 

  5. Veigl, M.L., Kasturi, L., Olechnowicz, J., et al., Biallelic Inactivation of hMLH1 by Epigenetic Gene Silencing, a Novel Mechanism Causing Human MSI Cancers, Proc. Natl. Acad. Sci. USA, 1998, vol. 15, pp. 8698–8702.

    Article  Google Scholar 

  6. Leung, S.Y., Yuen, S.T., Chung, L.P., et al., hMLH1 Promoter Methylation and Lack of hMLH1 Expression in Sporadic Gastric Carcinomas with High-Frequency Microsatellite Instability, Cancer Res., 1999, vol. 59, pp. 159–164.

    PubMed  CAS  Google Scholar 

  7. Vasen, H.F., Mecklin, J.P., Khan, P.M., et al., The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC), Dis. Colon Rectum, 1991, vol. 34, pp. 424–425.

    Article  PubMed  CAS  Google Scholar 

  8. Fishel, R., Lescoe, M.K., Rao, M.R., et al., The Human Mutator Gene Homolog MSH2 and Its Association with Hereditary Non-Polyposis Colon Cancer, Cell, 1993, vol. 75, pp. 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  9. Boland, C.R., Thibodeau, S.N., Hamilton, S.R., et al., A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Colorectal Cancer, Cancer Res., 1998, vol. 58, pp. 5248–5257.

    PubMed  CAS  Google Scholar 

  10. Parker, A.R., O’Meally, R.N., Oliver, D.H., et al., 8-Hydroxyguanosine Repair Is Defective in Some Microsatellite Stable Colorectal Cancer Cells, Cancer Res., 2002, vol. 62, pp. 7230–7233.

    PubMed  CAS  Google Scholar 

  11. Branch, P., Aquilina, A., Bignami, M., et al., Defective Mismatch Binding and a Mutator Phenotype in Cells Tolerant to DNA Damage, Nature, 1993, vol. 362, pp. 652–654.

    Article  PubMed  CAS  Google Scholar 

  12. Aquilina, G., Hess, P., Fiumicino, S., et al., A Mutator Phenotype Characterizes One of the Two Complementation Groups in Human Cells Tolerant to Methylation Damage, Cancer Res., 1995, vol. 55, pp. 2569–2575.

    PubMed  CAS  Google Scholar 

  13. Kaina, B. and Christmann, M., DNA Repair in Resistance to Alkylating Anticancer Drugs, Int. J. Clin. Pharmacol. Ther., 2002, vol. 40, pp. 354–367.

    PubMed  CAS  Google Scholar 

  14. Tronov, V.A., Konstantinov, E.M., and Kramarenko, I.I., Role of Excision Mechanisms of DNA Repair in Induction of Apoptosis, Biochemistry (Moscow), 2002, vol. 67, no. 7, pp. 882–889.

    Article  Google Scholar 

  15. Roos, W., Baumgartner, M., and Kaina, B., Apoptosis Triggered by DNA Damage O6-Methylguanine in Human Lymphocytes Requires DNA Replication and Is Mediated by p53 and Fas/CD95/Apo-1, Oncogene, 2004, vol. 23, pp. 359–367.

    Article  PubMed  CAS  Google Scholar 

  16. Biedler, J.L. and Spengler, B.A., Metaphase Chromosome Anomaly: Association with Drug Resistance and Cell-Specific Products, Science, 1976, vol. 191, pp. 185–187.

    Article  PubMed  CAS  Google Scholar 

  17. Kleivi, K., Teixeira, M.R., Eknaes, M., et al., Genome Signatures of Colon Carcinoma Cell Lines, Cancer Genet. Cytogenet., 2004, vol. 155, pp. 119–131.

    Article  PubMed  CAS  Google Scholar 

  18. Bayum, A., Isolation, Characterization, and Demonstration of Lymphocytes, Granulocytes, and Macrophages, Lymphocytes: Isolation, Fractionation, and Characterization, Natvig, J. B., Perlmann, P., and Wigzell, H., Eds., Baltimore: Univ. Park, 1976, pp. 9–19.

    Google Scholar 

  19. Singh, N.P., Microgels for Estimation of DNA Strand Breaks, DNA Protein Crosslinks and Apoptosis, Mutat. Res., 2000, vol. 455, pp. 111–127.

    PubMed  CAS  Google Scholar 

  20. Konca, K., Lankoff, A., Banasok, A., et al., A Cross-Platform Public Domain PC Image-Analysis Program for the Comet Assay, Mutat. Res., 2003, vol. 534, pp. 15–20.

    PubMed  CAS  Google Scholar 

  21. Holley, W.R. and Chatterjee, A., Clusters of DNA Induced by Ionizing Radiation: Formation of Short DNA Fragments: I. Theoretical Modeling, Radiat. Res., 1996, vol. 145, pp. 188–199.

    Article  PubMed  CAS  Google Scholar 

  22. Kolodner, R.D., Hall, N.R., Lipford, J., et al., Structure of the Human MLH1 Locus and Analysis of a Large Hereditary Nonpolyposis Colorectal Carcinoma Kindred for mlh1 Mutations, Cancer Res., 1995, vol. 55, pp. 242–248.

    PubMed  CAS  Google Scholar 

  23. Kolodner, R.D., Hall, N.R., Lipford, J., et al., Structure of the Human MLH2 Locus and Analysis of Two Muir-Torre Kindreds for msh2 Mutations, Genomics, 1994, vol. 24, pp. 516–526.

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  25. Ganguly, A., Rock, M.J., and Prockop, D.J., Conformation-Sensitive Gel Electrophoresis for Rapid Detection of Single-Base Differences in Double-Stranded PCR Products and DNA Fragments: Evidence for Solvent-Induced Bends in DNA Heteroduplexes, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 10325–10329.

    Article  PubMed  CAS  Google Scholar 

  26. Tronov, V.A., Kramarenko, I.I., Smirnova, T.D., et al., Comparison of Geno-and Cytotoxicity of Methylnitrosourea on MMR-Proficient and MMR-Deficient Human Tumor Cell Lines, Tsitologiya, 2006, vol. 48, no. 1, pp. 19–27.

    CAS  Google Scholar 

  27. Ochs, K. and Kaina, B., Apoptosis Induced by DNA Damage O6-Methylguanine Is Bcl-2 and caspase-9/3 Regulated and Fas/caspase-8 Independent, Cancer Res., 2000, vol. 60, pp. 5815–5824.

    PubMed  CAS  Google Scholar 

  28. Hirose, Y., Berger, M.S., and Pieper, R.O., p53 Effects Both the Duration of G2/M Arrest and the Fate of Temozolomide-Treated Human Glioblastoma Cells, Cancer Res., 2001, vol. 61, pp. 1957–1963.

    PubMed  CAS  Google Scholar 

  29. Hirose, Y., Katayama, M., Stokoe, D., et al., The p38 Mitogen-Activated Protein Kinase Pathway Links the DNA Mismatch Repair System to the G2 checkpoint and to Resistance to Chemotherapeutic DNA-Methylating Agents, Mol. Cell. Biol., 2003, vol. 23, pp. 8306–8315.

    Article  PubMed  CAS  Google Scholar 

  30. Karran, P., Mechanisms of Tolerance to DNA Damaging Therapeutic Drugs, Carcinogenesis, 2001, vol. 22, pp. 1931–1937.

    Article  PubMed  CAS  Google Scholar 

  31. D’Atri, S., Tentori, L., Lacal, P.M., et al., Involvement of the Mismatch Repair System in Temozolomide-Induced Apoptosis, Mol. Pharm., 1998, vol. 54, pp. 334–341.

    CAS  Google Scholar 

  32. Hirose, Y., Berger, M.S., and Pieper, R.O., Abrogation of the Chk1-Mediated G2 Checkpoint Pathway Potentiates Temozolomide-Induced Toxicity in a p53-Independent Manner in Human Glioblastoma Cells, Cancer Res., 2001, vol. 61, pp. 5843–5849.

    PubMed  CAS  Google Scholar 

  33. Bolzan, A.D., Paez, G.L., Bianchi, M.S., et al., Analysis of Telomeric Repeats and Telomerase Activity in Human Colon Carcinoma Cells with Gene Amplification, Cancer Genet. Cytogenet., 2000, vol. 120, pp. 166–170.

    Article  PubMed  CAS  Google Scholar 

  34. Tsushimi, T., Noshima, S., Oga, A., et al., DNA Amplification and Chromosomal Translocations Are Accompanied by Chromosomal Instability: Analysis of Seven Human Colon Cancer Cell Lines by Comparative Genomic Hybridization and Spectral Karyotyping, Cancer Genet. Cytogenet., 2001, vol. 126, pp. 34–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © VA. Tronov, I.I. Kramarenko, S.F. Zakharov, 2007, published in Genetika, 2007, Vol. 43, No. 4, pp. 537–544.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronov, V.A., Kramarenko, I.I. & Zakharov, S.F. Mismatch repair (MMR) efficiency and MSH2 gene mutation in human colorectal carcinoma cell line COLO320HSR. Russ J Genet 43, 430–436 (2007). https://doi.org/10.1134/S1022795407040126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407040126

Keywords

Navigation