Skip to main content
Log in

Laboratory System for Intensive Cultivation of Microalgae and Cyanobacteria

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Currently, microalgae and cyanobacteria attract the attention of researchers as potential producers of various valuable substances. To increase the profitability of biotechnological processes using these organisms, it is necessary to select highly effective strains and choose the optimal conditions for their growth and maximum productivity. Growth optimization should be carried out, on the one hand, under intensive conditions, as close as possible to large-scale cultivation, and, on the other hand, in small volumes in order to be able to check many different parameters in parallel at minimal cost. In this paper, the authors present a description and characteristics of their laboratory system for intensive cultivation (LSIC—Laboratory System for Intensive Cultivation) with thermo-, light-, and gas regulation and the possibility of cultivation in four repetitions in eight different conditions, differing in light, temperature, and CO2 concentration. As an example, the results of a number of experiments using the installation are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A., Commercial applications of microalgae, J. Biosci. Bioeng., 2006, vol. 101, p. 87. https://doi.org/10.1263/jbb.101.87

    Article  CAS  PubMed  Google Scholar 

  2. Chisti, Y., Raceways-based production of algal crude oil, Green, 2013, vol. 3, p. 195. https://doi.org/10.1515/green-2013-0018

    Article  CAS  Google Scholar 

  3. Hoang, A.T., Sirohi, R., Pandey, A., Nižetić, S., Lam, S.S., Chen, W.-H., Luque, R., Thomas, S., Arıcı, M., and Pham, V.V., Biofuel production from microalgae: Challenges and chances, Phytochem. Rev., 2022. https://doi.org/10.1007/s11101-022-09819-y

  4. Zorina, A.A., Bedbenov, V.S., Novikova, G.V., Panichkin, V.B., and Los, D.A., Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: Functional characterization of SpkE protein kinase, Mol. Biol. 2014, vol. 48, no. 3, p. 390. https://doi.org/10.1134/S0026893314030212

    Article  CAS  Google Scholar 

  5. Sinetova, M.A. and Los, D.A., Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers, Mol. BioSyst., 2016, vol. 12, p. 3254. https://doi.org/10.1039/C6MB00551A

    Article  CAS  PubMed  Google Scholar 

  6. Mironov, K.S., Sinetova, M.A., Shumskaya, M., and Los, D.A., Universal molecular triggers of stress responses in cyanobacterium Synechocystis, Life, 2019, vol. 9, p. 67. https://doi.org/10.3390/life9030067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsygankov, A.A., Laboratory scale photobioreactors, Appl. Biochem. Microbiol., 2001, vol. 37, no. 4, p. 333. https://doi.org/10.1023/A:1010266116747

    Article  CAS  Google Scholar 

  8. Benner, P., Meier, L., Pfeffer, A., Kruger, K., Oropeza Vargas, J.E., and Weuster-Botz, D., Lab-scale photobioreactor systems: principles, applications, and scalability, Bioprocess Biosyst. Eng., 2022, vol. 45, p. 791. https://doi.org/10.1007/s00449-022-02711-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vladimirova, M.G. and Semenenko, V.E., Intensivnaya kul’tura odnokletochnykh vodoroslei (Intensive Culture of Unicellular Algae), Moscow: Akademiya nauk SSSR, 1962.

  10. Abdullaev, A.A. and Semenenko, V.E., Intensive culture Dunaliella salina Teod. and some of its physiological characteristics, Fiz. Rast., 1974, vol. 21, p. 1145.

  11. Fuchs, T., Arnold, N.D., Garbe, D., Deimel, S., Lorenzen, J., Masri, M., Mehlmer, N., Weuster-Botz, D., and Bruck, T.B., A newly designed automatically controlled, sterilizable flat panel photobioreactor for axenic algae culture, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 697354. https://doi.org/10.3389/fbioe.2021.697354

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sinetova, M.A., Sidorov, R.A., Starikov, A.Y., Voronkov, A.S., Medvedeva, A.S., Krivova, Z.V., Pakholkova, M.S., Bachin, D.V., Bedbenov, V.S., Gabrielyan, D.A., Zayadan, B.K., Bolatkhan, K., and Los, D.A., Assessment of biotechnological potential of cyanobacteria and microalgae strains from the IPPAS culture collection, Appl. Biochem. Microbiol., 2020, vol. 56, p. 36. https://doi.org/10.1134/S0003683820070030

    Article  Google Scholar 

  13. Nowicka-Krawczyk, P., Mühlsteinová, R., and Hauer, T., Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria), Sci. Rep., 2019, vol. 9, p. 694. https://doi.org/10.1038/s41598-018-36831-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furmaniak, M.A., Misztak, A.E., Franczuk, M.D., Wilmotte, A., Waleron, M., and Waleron, K.F., Edible cyanobacterial genus Arthrospira: Actual state of the art in cultivation methods, genetics, and application in medicine, Front. Microbiol., 2017, vol. 8, p. 2541. https://doi.org/10.3389/fmicb.2017.02541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fučíková, K. and Lewis, L., Intersection of Chlorella, Muriella and Bracteacoccus: Resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta), Fottea, 2012, vol. 12, p. 83. https://doi.org/10.5507/fot.2012.007

    Article  Google Scholar 

  16. Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., and Chen, F., Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential, Mar. Drugs, 2014, vol. 12, p. 3487. https://doi.org/10.3390/md12063487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahajan, G. and Kamat, M., γ-Linolenic acid production from Spirulina platensis, Appl. Microbiol. Biotechnol., 1995, vol. 43, p. 466. https://doi.org/10.1007/bf00218450

    Article  CAS  Google Scholar 

  18. Golmakani, M.T., Rezaei, K., Mazidi, S., and Razavi, S.H., γ-Linolenic acid production by Arthrospira platensis using different carbon sources, Eur. J. Lipid Sci. Technol., 2012, vol. 114, p. 306. https://doi.org/10.1002/ejlt.201100264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sinetova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: GAM—gas-air mixture; GLA—gamma-linolenic acid; d.w.—dry weight; LSIC—Laboratory System for Intensive Cultivation.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielyan, D.A., Sinetova, M.A., Gabrielyan, A.K. et al. Laboratory System for Intensive Cultivation of Microalgae and Cyanobacteria. Russ J Plant Physiol 70, 20 (2023). https://doi.org/10.1134/S1021443722602737

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602737

Keywords:

Navigation