Skip to main content
Log in

Possible Physiological Mechanisms of Leaf Photodamage in Plants Grown under Continuous Lighting

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Unlike the natural photoperiod that includes the alternation of day and night in the diurnal cycle, continuous (24 h a day) lighting provides uninterrupted supply of light energy required for photosynthesis, permanently promotes photooxidative processes, implies continuous signaling to the photoreceptors, and desynchronizes the internal circadian biorhythms from the external light/dark cycle (circadian asynchrony). The leaves of many plant species grown under constinuous lighting are prone to characteristic and potentially lethal interveinal chlorosis and necrosis. The photodamage of plant leaves exposed to long photoperiods, including daily 24-h illumination was described more than 90 years ago, but the causes of this phenomenon are still not entirely clear. Biological bases underlying this phenomenon are theoretically and practically important, because growing plants under a 24-h photoperiod at a relatively low photon flux density is seemingly an effective way to save resources and increase plant productivity in greenhouses and plant factories with artificial lighting. This review of available literature compiles and evaluates the arguments both supporting and confronting the hypothesis that carbohydrate accumulation, specifically the hyperaccumulation of starch in leaves, is the main cause of photodamage to plants grown under continuous lighting or long photoperiods. The analysis of a large number of studies indicates that the accumulation of carbohydrates is neither the main nor the only cause of leaf injuries in plants grown under a 24-h photoperiod, although the role of this factor in photodamage cannot be ruled out. The appearance and development of photodamage under a 24-h photoperiod is presumably due to several simultaneously acting factors, such as photooxidation, stress-induced senescence, and circadian asynchrony. The contribution of individual factors to photodamage may vary substantially depending on environmental conditions and biological properties of the object (plant species and variety, plant age, and the stage of development).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Demmig-Adams, B. and Adams, W.W., Photoprotection and other responses of plants to high light stress, Ann. Rev. Plant Physiol. Plant Mol. Biol., 1992, vol. 43, p. 599. https://doi.org/10.1146/annurev.pp.43.060192.003123

    Article  CAS  Google Scholar 

  2. Li, Z., Wakao, S., Fischer, B.B., and Niyogi, K.K., Sensing and responding to excess light, Ann. Rev. Plant Biol., 2009, vol. 60, p. 239. https://doi.org/10.1146/annurev.arplant.58.032806.103844

    Article  CAS  Google Scholar 

  3. Demers, D.A. and Gosselin, A., Growing greenhouse tomato and sweet pepper under supplemental lighting: optimal photoperiod, negative effects of long photoperiod and their causes, Acta Hortic., 2002, vol. 580, p. 83. https://doi.org/10.17660/ActaHortic.2002.580.9

  4. Sysoeva, M.I., Markovskaya, E.F., and Shibaeva, T.G., Plant under continuous light: a review, Plant Stress, 2010, vol. 4, p. 5.

    Google Scholar 

  5. Velez-Ramirez, A.I., van Ieperen, W., Vreugdenhil, D., and Millenaar, F.F., Plants under continuous light, Trends Plant Sci., 2011, vol. 16, p. 310. https://doi.org/10.1016/j.tplants.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  6. Arthur, J.M., Plant growth in continuous illumination, in Biological Effects of Radiation, Duggar, D.B., Ed., New York: McGraw-Hill, 1936, vol. 2, p. 715.

    Google Scholar 

  7. Arthur, J.W., Guthrie, J.D., and Newell, J.M., Some effects of artificial climates on the growth and chemical composition of plants, Am. J. Bot., 1930, vol. 17, p. 416. https://doi.org/10.2307/2435930

    Article  CAS  Google Scholar 

  8. Withrow, A.P. and Withrow, R.B., Photoperiodic chlorosis in tomato, Plant Physiol., 1949, vol. 24, p. 657. https://doi.org/10.1104/pp.24.4.657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hillman, W.S., Injury of tomato plants by continuous light and unfavorable photoperiodic cycles, Am. J. Bot., 1956, vol. 43, p. 89. https://doi.org/10.2307/2438816

    Article  Google Scholar 

  10. Ho, L.C., The relationship between rates of carbon transport and of photosynthesis in tomato leaves, J. Exp. Bot., 1976, vol. 27, p. 87. https://doi.org/10.1093/jxb/27.1.87

    Article  CAS  Google Scholar 

  11. Bradley, F.M. and Janes, H.W., Carbon partitioning in tomato leaves exposed to continuous light, Acta Hortic., 1985. V. 174. P. 293. https://doi.org/10.17660/ActaHortic.1985.174.37

  12. Logendra, S., Putman, J.D., and Janes, H.W., The influence of light period on carbon partitioning, translocation and growth in tomato, Sci. Hortic., 1990, vol. 42, p. 75. https://doi.org/10.1016/0304-4238(90)90149-9

    Article  Google Scholar 

  13. Vézina, F., Trudel, M.J., and Gosselin, A., Influence du mode d’utilisation de l’éclairage d’appoint sur la productivité et la physiologie de la tomate se serre, Can. J. Plant Sci., 1991, vol. 71, p. 923.

    Article  Google Scholar 

  14. Dorais, M., Carpentier, R., Yelle, S., and Gosselin, A., Adaptability of tomato and pepper leaves to changes in photoperiod: effects on the composition and function of the thylakoid membrane, Physiol. Plant., 1995, vol. 94, p. 692. https://doi.org/10.1111/j.1399-3054.1995.tb00986.x

    Article  CAS  Google Scholar 

  15. Dorais, M., Yelle, S., and Gosselin, A., Influence of extended photoperiod on photosynthate particioning and export in tomato and pepper plants, N. Z. J. Crop Hortic. Sci., 1996, vol. 24, p. 29. https://doi.org/10.1080/01140671.1996.9513932

    Article  Google Scholar 

  16. Globig, S., Rosen, I., and Janes, H.W., Continuous light effects on photosynthesis and carbon metabolism in tomato, Acta Hortic., 1997, vol. 418, p. 141. https://doi.org/10.17660/ActaHortic.1997.418.19

  17. Cushman, K.E. and Tibbitts, T.W., The role of ethylene in the development of constant-light injury of potato and tomato, J. Am. Soc. Hortic. Sci., 1998, vol. 123, p. 239.

    Article  CAS  PubMed  Google Scholar 

  18. Demers, D.A., Dorais, M, Wien, H.C., and Gosselin, A., Effects of supplemental light duration on greenhouse tomato (Lycopersicon exculentum Mill.) plants and fruit yields, Sci. Hortic., 1998, vol. 74, p. 295. https://doi.org/10.1016/S0304-4238(98)00097-1

    Article  Google Scholar 

  19. Velez-Ramirez, A.I., van Ieperen, W., Vreugdenhil, D., van Poppel, P.M.J.A., Heuvelink, E., and Millenaar, F.F., A single locus confers tolerance to continuous light and allows substantial yield increase in tomato, Nat. Commun., 2014, vol. 5, p. 4549. https://doi.org/10.1038/ncomms5549

    Article  CAS  PubMed  Google Scholar 

  20. Velez-Ramirez, A.I., Dünner-Planella, G., Vreugdenhil, D., Millenaar, F.F., and van Ieperen, W., On the induction of injury in tomato under continuous light: circadian asynchrony as the main triggering factor, Funct. Plant Biol., 2017, vol. 6, p. 597. https://doi.org/10.1071/FP16285

    Article  Google Scholar 

  21. Velez-Ramirez, A., Carreno-Quintero, N., Vreugdenhil, D., Millenaar, F.F., and van Ieperen, W., Sucrose and starch content negatively correlates with PSII maximum quantum efficiency in tomato (Solanum lycopercicum) exposed to abnormal light/dark cycles and continuous light, Plant Cell Physiol., 2017, vol. 58, p. 1339. https://doi.org/10.1093/pcp/pcx068

    Article  CAS  PubMed  Google Scholar 

  22. Matsuda, R., Ozawa, N., and Fujiwara, K., Effects of continuous lighting with or without a diurnal temperature difference on photosynthetic characteristics of tomato leaves, Acta Hortic., 2012, vol. 956, p. 165. https://doi.org/10.17660/ActaHortic.2012.956.16

  23. Matsuda, R., Yamano, T., Murakami, K., and Fujiwara, K., Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury, Sci. Hortic., 2016, vol. 198, p. 363. https://doi.org/10.1016/j.scienta.2015.11.045

    Article  CAS  Google Scholar 

  24. Hague, M.S., Kjaer, K.H., Rosenqvist, E., and Ottosen, C.O., Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species, Front. Plant Sci., 2015, vol. 6, p. 522. https://doi.org/10.3389/fpls.2015.00522

    Article  Google Scholar 

  25. Hague, M., de Sousa, A., Soares, C., Kjaer, K.H., Fidalgo, F., Rosenqvist, E., and Ottosen, C.-O., Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance, Front. Plant Sci., 2017, vol. 8, p. 1602. https://doi.org/10.3389/fpls.2017.01602

    Article  Google Scholar 

  26. Ikkonen, E.N., Shibaeva, T.G., Rosenqvist, E., and Ottosen, C.O., Daily temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light, Photosynthetica, 2015, vol. 53, p. 114. https://doi.org/10.1007/s11099-015-0115-4

    Article  CAS  Google Scholar 

  27. Shibaeva, T.G. and Sherudilo, E.G., Immediate and delayed effects of diurnal temperature drops on growth and reproductive development of tomato plants grown under continuous lighting, Russ. J. Plant Physiol., 2015, vol. 62, p. 328. https://doi.org/10.1134/S1021443715030176

    Article  CAS  Google Scholar 

  28. Shibaeva, T.G. and Titov, A.F., The influence of continuous light on the pigment complex of plants of the fam. Solanaceae, Tr. Karel’sk. Nauchn. Tsentra RAN. Ser. Eksperim. Biol., 2017, no. 5, p. 111. https://doi.org/10.17076/eb498

  29. Shibaeva, T.G., Mamaev, A.V., and Sherudilo, E.G., Evaluation of a SPAD-502 plus chlorophyll meter to estimate chlorophyll content in leaves with interveinal chlorosis, Russ. J. Plant Physiol., 2020, vol. 67, p. 690. https://doi.org/10.1134/S1021443720040160

    Article  CAS  Google Scholar 

  30. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G. Ikkonen, E.N., and Titov, A.F., Age-related changes in sensitivity of tomato (Solanum lycopersicum L.) leaves to continuous light, Russ. J. Plant Physiol., 2021, vol. 68, p. 948. https://doi.org/10.1134/S1021443721040154

    Article  CAS  Google Scholar 

  31. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G., and Titov, A.F., The role of photosynthetic daily light integral in plant response to extended photoperiods, Russ. J. Plant Physiol., 2022, vol. 69, p. 7. https://doi.org/10.1134/S1021443722010216

    Article  CAS  Google Scholar 

  32. Murage, E., Watashiro, N., and Masuda, M., Leaf chlorosis and carbon metabolism of eggplant in response to continuous light and carbon dioxide, Sci. Hortic., 1996, vol. 67, p. 27. https://doi.org/10.1016/S0304-4238(96)00930-2

    Article  CAS  Google Scholar 

  33. Murage, E.N., Sato, Y., and Masuda, M., Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination, Sci. Hortic., 1997, vol. 68, p. 73.https://doi.org/10.1016/S0304-4238(96)00953-3

  34. Murage, E.N. and Masuda, M., Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes, Sci. Hortic., 1997, vol. 70, p. 269. https://doi.org/10.1016/S0304-4238(97)00078-2

    Article  CAS  Google Scholar 

  35. Nilwik, H.J.M., Growth analysis of sweet pepper (Capsicum annuum L.). Interacting effects of irradiance, temperature and plant age in controlled conditions, Ann. Bot., vol 48, p. 137. https://doi.org/10.1093/oxfordjournals.aob.a086107

  36. Demers, D.A., Gosselin, A., and Wien, H.C., Effects of supplemental light duration on greenhouse sweet pepper plants and fruit yields, J. Amer. Soc Hortic. Sci., 1998, vol. 123, p. 202. https://doi.org/10.21273/JASHS.123.2.202

    Article  Google Scholar 

  37. Lanoue, J., Little, C., and Hao, X., The power of far-red light at night: photomorphogenic, physiological, and yield response in pepper during dynamic 24 hour lighting, Front. Plant Sci., 2022, vol. 13, p. 857616. https://doi.org/10.3389/fpls.2022.857616

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wolff, S.A. and Langerud, A., Fruit yield, starch content and leaf chlorosis in cucumber exposed to continuous lighting, Eur. J. Hortic. Sci., 2006, vol. 71, p. 259.

    Google Scholar 

  39. Shibaeva, T.G. and Markovskaya, E.F., Growth and development of cucumber Cucumis sativus L. in the prereproductive period under long photoperiods, Russ. J. Dev. Biol., 2013, vol. 44, p. 78. https://doi.org/10.1134/S1062360413020082

    Article  CAS  Google Scholar 

  40. Wheeler, R.M. and Tibbitts, T.W., Utilization of potatoes for life support systems in space. I. Cultivar-photoperiod interaction, Am. Potato J., 1986, vol. 63, p. 315. https://doi.org/10.1007/BF02854441

    Article  CAS  PubMed  Google Scholar 

  41. Wheeler, R.M. and Tibbitts, T.W., Growth and tuberization of potato (Solanum tuberosum L.) under continuous light, Plant Physiol., 1986, vol. 80, p. 801. https://doi.org/10.1104/pp.80.3.801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao, W. and Tibbitts, T.W., Physiological responses in potato plants under continuous irradiation, J. Am. Soc. Hortic. Sci., 1991, vol. 116, p. 525. https://doi.org/10.21273/JASHS.116.3.525

    Article  CAS  PubMed  Google Scholar 

  43. Cushman, K.E., Tibbitts, T.W., Sharkey, T.D., and Wise, R.R., Constant-light injury of potato: Temporal and spatial patterns of carbon dioxide assimilation, starch content, chloroplast integrity, and necrotic lesions, J. Am. Soc. Hortic. Sci., 1995, vol. 120, p. 1032. https://doi.org/10.21273/JASHS.120.6.1032

    Article  Google Scholar 

  44. Wheeler, R.M., Potato and human exploration of space: some observations from NASA-sponsored controlled environment studies, Potato Res., 2006, vol. 49, p. 67. https://doi.org/10.1007/s11540-006-9003-4

    Article  CAS  Google Scholar 

  45. Dorais, M. and Gosselin, A., Physiological response of greenhouse vegetable crops to supplemental lighting, Acta Hortic., 2002, vol. 580, p. 59. https://doi.org/10.17660/ActaHortic.2002.580.6

  46. Matsuda, R., Ozawa, N., and Fujiwara, K., Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences, Sci. Hortic., 2014, vol. 170, p. 150. https://doi.org/10.1016/j.scienta.2014.03.014

    Article  CAS  Google Scholar 

  47. Dorais, M., Aspects culturaux et physiologiques de la tomate et du poivron de serre soumis à un éclairage d’appoint, Thèse de Doctorat, Faculté des Études Supérieures, Université Laval, Québec, Canada, 1992.

  48. Demers, D.A., Yelle, S., and Gosselin, A., Effects of continuous lighting on enzyme activities of leaf carbon metabolism of tomato and pepper plants, Hort. Sci., 1994, vol. 29, p. 250. https://doi.org/10.21273/HORTSCI.29.4.250a

    Article  Google Scholar 

  49. Sawada, S., Hayakawa, T., Fukushi, K., and Kasai, M., Influence of carbohydrates on photosynthesis in single rooted soybean leaves used as a source-sink model, Plant Cell Physiol., 1986, vol. 27, p. 591. https://doi.org/10.1093/oxfordjournals.pcp.a077138

    Article  CAS  Google Scholar 

  50. Kerr, P.S., Rufty, T.W., and Huber, S.C., Endogenous rhythms in photosynthesis, sucrose phosphate synthase activity, and stomata resistance in leaves of soybeans (Glycine max L. Merr.), Plant Physiol., 1985, vol. 77, p. 275. https://doi.org/10.1104/pp.77.2.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Layne, D.R. and Flore, J.A., Physiological responses of Prunus cerasus to whole-plant source manipulation. Leaf gas exchange, chlorophyll fluorescence, water relations and carbohydrate concentrations, Physiol. Plant., 1993, vol. 88, p. 44. https://doi.org/10.1111/j.1399-3054.1993.tb01758.x

    Article  CAS  Google Scholar 

  52. Kalucheva, I. and Vinarova, K., Deformation of chloroplasts upon illumination and darkening of tomato leaves, C. R. Acad. Bulg. Sci., 1969, vol. 22, p. 93.

    Google Scholar 

  53. Schaffer, A.A., Nerson, H., and Zamski, E., Premature leaf chlorosis in cucumber associated with high starch accumulation, J. Plant Physiol., 1991, vol. 138, p. 186. https://doi.org/10.1016/S0176-1617(11)80268-3

    Article  CAS  Google Scholar 

  54. Chatterton, N.J. and Silvius, J.E., Photosynthate partitioning into starch in soybean leaves. 1. Effects of photoperiod versus photosynthetic period duration, Plant Physiol., 1979, vol. 64, p. 749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chatterton, N.J. and Silvius, J.E., Photosynthate partitioning into leaf starch as affected by the daily photosynthetic period duration in six species, Physiol. Plant., 1980, vol. 49, p. 141.

    Article  Google Scholar 

  56. Kursanov, A.L., Endogenous regulation of assimilate transport and donor–acceptor relationships in plants, Russ. J. Plant Phys., 1984, vol. 31, p. 579.

    CAS  Google Scholar 

  57. Kursanov, A.L., Endogenous regulation of assimilate transport and donor-acceptor relationships in plants, in Peredvizhenie assimilyatov v rasteniyakh i problema sakharonakopleniya (Movement of Assimilates in Plants and the Problem of Sugar Accumulation), Pechenov, V.A., Ed., Frunze: Ilim, 1986, p. 110.

  58. Mokronosov, A.T., Fotosinteticheskaya funktsciya i celostnost’ rastitel’nogo organizma (Photosynthetic Function and Integrity of the Plant Organism), Moscow: Nauka, 1983.

    Google Scholar 

  59. Van Gestel, N.C., Nesbit, A.D., Gordon, E.P., Green, C., Pare, P.W., Thompson, L., Peffley, E.B., and Tissue, D.T., Continuous light may induce photosynthetic downregulation in onion—consequences for growth and biomass partitioning, Physiol. Plant., 2005, vol. 125, p. 235. https://doi.org/10.1111/j.1399-3054.2005.00560.x

    Article  CAS  Google Scholar 

  60. Stettler, M., Eicke, S., Mettler, T., Messerli, G., Hörtensteiner, S., and Zeeman, S.C., Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation, Mol. Plant., 2009, vol. 2, p. 1233. https://doi.org/10.1093/mp/ssp093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Braun, D.M., Ma, Y., Inada, N., Muszynski, M.G., and Baker, R.F., Tie-dyed1 regulates carbohydrate accumulation in maize leaves, Plant Physiol., 2006, vol. 142, p. 1511. https://doi.org/10.1104/pp.106.090381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baker, R.F. and Braun, D.M., Tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves, Plant Physiol., 2007, vol. 144, p. 867. https://doi.org/10.1104/pp.107.098814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baker, R.F. and Braun, D.M., Tie-dyed2 functions with Tie-dyed1 to promote carbohydrate export from maize leaves, Plant Physiol., 2008, vol. 146, p. 1085. https://doi.org/10.1104/pp.107.111476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cushman, K.E. and Tibbitts, T.W., Size of tuber propagule influences injury of “Kennebec” potato plants by constant light, Hortic. Sci., 1996, vol. 31, p. 1164. https://doi.org/10.21273/HORTSCI.31.7.1164

    Article  CAS  Google Scholar 

  65. Demers, D.A., Physiologie, photosynthèse et métabolisme carboné de plants de tomate (Lycopersicon esculentum Mill.) et de poivron (Capsicum annuum L.) cultivés sous de longues photoperiods, Thèse de Doctorat, Faculté des Études Supérieures, Université Laval, Ste-Foy, Québec, Canada, 1998.

  66. Galtier, N., Foyer, C.H., Huber, J., Voelker, T.A., and Huber, S.C., Effects of elevated sucrose-phosphate synthase activity on photosynthesis and assimilate partitioning and growth in tomato (Lycopersicon esculentum var UC82B), Plant Physiol., 1993, vol. 101, p. 535.https://doi.org/10.1104/pp.101.2.535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Galtier, N., Foyer, C.N., Murchie, E., Alred, R., Quick, P., Voelker, T.A., Thépenier, C., Lascève, G., and Betsche, T., Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase, J. Exp. Bot., 1995, vol. 46, p. 1335. https://doi.org/10.1093/jxb/46.special_issue.1335

    Article  CAS  Google Scholar 

  68. Micallef, B.J., Haskins, K.A., Vanderveer, P.J., Roh, K.S., Shewmaker, C.K., and Sharkey, T.D., Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have increased capacity for sucrose synthesis, Planta, 1995, vol. 196, p. 327. https://doi.org/10.1007/BF00201392

    Article  CAS  Google Scholar 

  69. Lanoue, J., Zheng, J., Little, C., Grodzinski, B., and Hao, X., Continuous light does not compromise growth and yield in mini-cucumber greenhouse production with supplemental LED light, Plants, 2021, vol. 10, p. 378. https://doi.org/10.3390/plants10020378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lanoue, J., Leonardos, E.D., and Grodzinski, B., Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves, Front. Plant Sci., 2018, vol. 9, p. 756. https://doi.org/10.3389/fpls.2018.00756

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ma, S., Sun, L., Sui, X., Li, Y., Chang, Y., Fan, J., and Zhang, Z., Phloem loading in cucumber: combined symplastic and apoplastic strategies, Plant J., 2019, vol. 98, p. 391. https://doi.org/10.1111/tpj.14224

    Article  CAS  PubMed  Google Scholar 

  72. Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J.-L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse, Ch., Lemonnier, P., Parrilla, J., and Durand, M., Source-to-sink transport of sugar and regulation by environmental factors, Front. Plant Sci., 2013, vol. 4, p. 272. https://doi.org/10.3389/fpls.2013.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grodzinski, B., Jiao, J., and Leonardos, E.D., Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2, Plant Physiol., 1998, vol. 117, p. 207.https://doi.org/10.1104/pp.117.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stitt, M., Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells, Plant Cell Environ., 1991, vol. 14, p. 741. https://doi.org/10.1111/j.1365-3040.1991.tb01440.x

    Article  CAS  Google Scholar 

  75. Cakmak, I. and Kirkby, E.A., Role of magnesium in carbon partitioning and alleviating photooxidative damage, Physiol. Plant., 2008, vol. 133, p. 692. https://doi.org/10.1111/j.1399-3054.2007.01042.x

    Article  CAS  PubMed  Google Scholar 

  76. Krapp, A., Quick, W.P., and Stitt, M., Ribulose-1,5-biphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream, Planta, 1991, vol. 186, p. 58. https://doi.org/10.1007/BF00201498

    Article  CAS  PubMed  Google Scholar 

  77. Foyer, C.H., Neukermans, J., Queval, G., Noctor, G., and Harbinson, J., Photosynthetic control of electron transport and the regulation of gene expression, J. Exp. Bot., 2012, vol. 63, p. 1637. https://doi.org/10.1093/jxb/ers013

    Article  CAS  PubMed  Google Scholar 

  78. Van den Ende, W. and Valluru, R., Sucrose, sucrosyl oligosaccharides, and oxidative stress: Scavenging and salvaging?, J. Exp. Bot., 2009, vol. 60, p. 9. https://doi.org/10.1093/jxb/ern297

    Article  CAS  PubMed  Google Scholar 

  79. Nott, A., Jung, H.-S., Koussevitzky, S., and Chory, J., Plastid-to-nucleus retrograde signaling, Annu. Rev. Plant Biol., 2006, vol. 57, p. 739. https://doi.org/10.1146/annurev.arplant.57.032905.105310

    Article  CAS  PubMed  Google Scholar 

  80. Inaba, T., Bilateral communication between plastid and the nucleus: Plastid protein import and plastid-to-nucleus retrograde signaling, Biosci. Biotechnol. Biochem., 2010, vol. 74, p. 471. https://doi.org/10.1271/bbb.90842

    Article  CAS  PubMed  Google Scholar 

  81. Ruckle, M.E., DeMarco, S.M., and Larkin, R.M., Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis, Plant Cell, 2007, vol. 19, p. 3944. https://doi.org/10.1105/tpc.107.054312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruckle, M.E., Burgoon, L.D., Lawrence, L.A., Sinkler, C.A., and Larkin, R.M., Plastids are major regulators of light signaling in Arabidopsis, Plant Physiol., 2012, vol. 159, p. 366. https://doi.org/10.1104/pp.112.193599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lepistö, A. and Rintamäki, E., Coordination of plastid and light signaling 609 pathways upon development of arabidopsis leaves under various photoperiods, Mol. Plant., 2012, vol. 5, p. 799. https://doi.org/10.1093/mp/ssr106

    Article  CAS  PubMed  Google Scholar 

  84. Lanoue, J., Zheng, J., Little, C., Thibodeau, A., Grodzinski, B., and Hao, X., Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting, Front. Plant Sci., 2019, vol. 10, p. 1114. https://doi.org/10.3389/fpls.2019.01114

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lanoue, J., Thibodeau, A., Little, C., Zheng, J., Grodzinski, B., and Hao, X., Light spectra and root stocks affect response of greenhouse tomatoes to long photoperiod of supplemental lighting, Plants, 2021, vol. 10, p. 1674. https://doi.org/10.3390/plants10081674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peter, E., Rothbart, M., Oelze, M.-L., Shalygo, N., Dietz, K.-J., and Grimm, B., Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions, Plant Cell Physiol., 2010, vol. 51, p. 1229. https://doi.org/10.1093/pcp/pcq071

    Article  CAS  PubMed  Google Scholar 

  87. Graf, A., Schlereth, A., Stitt, M., and Smith, A.M., Circadian control of carbohydrate availability for growth in Arabidopsis plants at night, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, p. 9458. https://doi.org/10.1073/pnas.0914299107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weise, S.E., Schrader, S.M., Kleinbeck, K.R., and Sharkey, T.D., Carbon balance and circadian regulation of hydrolytic and phosphorolytic breakdown of transitory starch, Plant Physiol., 2006, vol. 141, p. 879. https://doi.org/10.1104/pp.106.081174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu, Y., Gehan, J.P., and Sharkey, T.D., Daylength and circadian effects on starch degradation and maltose metabolism, Plant Physiol., 2005, vol. 138, p. 2280. https://doi.org/10.1104/pp.105.061903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. James, A.B., Monreal, J.A., Nimmo, G.A., Kelly, C.L., Herzyk, P., Jenkins, G.I., and Nimmo, H.G., The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots, Science, 2008, vol. 322, p. 1832. https://doi.org/10.1126/science.11614

    Article  CAS  PubMed  Google Scholar 

  91. Zeeman, S.C., Delatte, T., Messerli, G., Umhang, M., Stettler, M., Mettler, T., Streb, S., Reinhold, H., and Kotting, O., Starch breakdown: Recent discoveries suggest distinct pathways and novel mechanisms, Func. Plant Biol., 2007, vol. 34, p. 465. https://doi.org/10.1071/FP06313

    Article  CAS  Google Scholar 

  92. Pham, D.M. and Chun, C., Growth and leaf injury in tomato plants under continuous light at different settings of constant and diurnally varied photosynthetic photon flux densities, Sci. Hortic., 2020, vol. 269, p. 109347. https://doi.org/10.1016/j.scienta.2020.109347

    Article  CAS  Google Scholar 

  93. Wingler, A., Masclaux-Daubresse, C., and Fischer, A.M., Sugars, senescence, and ageing in plants and heterotrophic organisms, J. Exp. Bot., 2009, vol. 60, p. 1063. https://doi.org/10.1093/jxb/erp067

    Article  CAS  PubMed  Google Scholar 

  94. Lim, P.O., Kim, H.J., and Gil Nam, H., Leaf senescence, Annu. Rev. Plant Biol., 2007, vol. 58, p. 115. https://doi.org/10.1146/annurev.arplant.57.032905.105316

    Article  CAS  PubMed  Google Scholar 

  95. Van Doorn, W.G., Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels?, J. Exp. Bot., 2008, vol. 59, p. 1963. https://doi.org/10.1093/jxb/ern076

    Article  CAS  PubMed  Google Scholar 

  96. Noodén, L.D., The phenomena of senescence and aging, in Senescence and Aging in Plants, Noodén, L.D. and Leopold, A.C., Eds., San Diego, CA: Academic Press, 1988.

    Google Scholar 

  97. Cushman, K.E. and Tibbitts, T.W., Root-zone temperature effects on continuous irradiation injury on potato, Hortic. Sci., 1991, vol. 26, p. 745.

    Google Scholar 

  98. Tibbitts, T.W., Bennett, S.M., and Cao, W., Control of continuous irradiation injury on potato with daily temperature cycling, Plant Physiol., 1990, vol. 93, p. 409. https://doi.org/10.1104/pp.93.2.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao, W. and Tibbitts, T.W., Temperature cycling periods affect growth and tuberization in potatoes under continuous light, Hortic. Sci., 1992, vol. 27, p. 344. https://doi.org/10.21273/HORTSCI.27.4.344

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The use of scientific equipment of the Center for Collective Use of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences, is acknowledged.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-016-00033а). It was also scheduled by the state task to the Karelian Research Center of the Russian Academy of Sciences (FMEN-2022-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Shibaeva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bulychev

Abbreviations: CL—continuous lighting (24-h photoperiod); ETC—electron transport chain; LED—light-emitting diode; LMA—leaf dry mass per unit area, ROS—reactive oxygen species; DLI – daily light integral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibaeva, T.G., Mamaev, A.V. & Titov, A.F. Possible Physiological Mechanisms of Leaf Photodamage in Plants Grown under Continuous Lighting. Russ J Plant Physiol 70, 15 (2023). https://doi.org/10.1134/S1021443722602646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602646

Keywords:

Navigation