Skip to main content
Log in

Physiological Response of Mentha aquatica L., Eryngium caucasicum (Trautv.), and Froriepia subpinnata (Ledeb.) to Lead Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Mentha aquatica L., Eryngium caucasicum Trautv., and Froriepia subpinnata Ledeb are native plants in Iran. Lead (Pb) is one of the most dangerous heavy metals that damages to plant growth process. In the present study, we investigated the biochemical response of M. aquatica, E. caucasicum and F. subpinnata to Pb stress in the three separate pot experiments. Experimental treatments were different concentrations of Pb including 0, 125, 250, 375, and 500 mg/kg of Pb in the soil. Chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid, phenol, flavonoid, DPPH, and Pb concentration in the shoot was measured. The result showed that Pb stress significantly affected photosynthesis pigments. The minimum Chl a, Chl b, and carotenoid content was produced at 500 mg/kg of Pb in the soil in all three plants. Total phenol and flavonoid compounds and antioxidant capacity of plants increased with enhancement of Pb concentration in soil. M. aquatica produced the maximum total phenol and total flavonoid compounds, and antioxidant activity compared to E. caucasicum and F. subpinnata. Enhancement of antioxidant compounds production due to the Pb stress could be a defense mechanism to tolerate Pb stress. The concentration of Pb in the shoot of all three plants was increased linearly with the enhancement in the concentration of Pb in soil. M. aquatica had the lowest concentration of Pb in the shoot. Also, M. aquatica was more resistant to Pb stress than the other two plants due to the lower effect of Pb stress on photosynthetic pigments and higher antioxidant compounds content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Islam, E., Liu, D., and Li, T.Q., Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi, J. Hazard. Mater., 2008, vol. 154, p. 914. https://doi.org/10.1016/j.jhazmat.2007.10.121

    Article  CAS  Google Scholar 

  2. Ashraf, U., Kanu, A.S., Mo, Z., Hussain, S., Anjum, S.A., Khan, I., Abbas, R.N., and Tang, X., Lead toxicity in rice: effects, mechanisms, and mitigation strategies – A mini review, Environ. Sci. Pollut. Res., 2015, vol. 22, p. 18318. https://doi.org/10.1007/s11356-015-5463-x

    Article  CAS  Google Scholar 

  3. Anjum, N.A., Ahmad, I., Mahmood, I., Pacheco, M., Duarte, A.C., Pereira, E., Umar, S., Ahmad, A., Khan, N., Iqbal, M., and Prasad, M.N.V., Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids – A review, Environ. Exp. Bot., 2012, vol. 75, p. 307. https://doi.org/10.1016/j.envexpbot.2011.07.002

    Article  CAS  Google Scholar 

  4. Nas F.S. and Ali, M., The effect of lead on plants in terms of growing and biochemical parameters: a review, MOJ Eco. Environ. Sci., 2018, vol. 3, p. 265. https://doi.org/10.15406/mojes.2018.03.00098

    Article  Google Scholar 

  5. Rucińska-Sobkowiak R., Water relations in plants subjected to heavy metal stresses, Acta. Physiol. Plant., 2016, vol. 38, p. 257. https://doi.org/10.1007/s11738-016-2277-5

    Article  CAS  Google Scholar 

  6. Tohidi Moghadam, H.R., Donath, T.W., Ghooshchi, F.M., and Sohrabi, M., Investigating the probable consequences of super absorbent polymer and mycorrhizal fungi to reduce detrimental effects of Pb on wheat (Triticum aestivum L.), Agron. Res., 2018, vol. 16, p. 286. https://doi.org/10.15159/AR.18.009

    Article  Google Scholar 

  7. Kumar, G.H. and Kumari, J.P., Heavy metal lead influative toxicity and its assessment in phytoremediating plants – A review., Water, Air, Soil Pollut., 2015, vol. 226, 324. https://doi.org/10.1007/s11270-015-2547-7

    Article  CAS  Google Scholar 

  8. Emamverdian, A., Ding, Y., Mokhberdoran, F., and Xie, Y., Heavy metal stress and some mechanisms of plant defense response, Sci. World J., 2015, vol. 18. https://doi.org/10.1155/2015/756120

  9. Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B., Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress, Molecules, 2019, vol. 24, p. 2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  Google Scholar 

  10. Venditti A., Frezza, C., Celona, D., Sciubba, F., Foddai, S., Delfini, M., Serafini, M., and Bianco, A., Phytochemical comparison with quantitative analysis between two flower phenotypes of Mentha aquatica L.: pink-violet and white, AIMS Molecular Sci., 2017, vol. 4, p. 288. https://doi.org/10.3934/molsci.2017.3.288

    Article  CAS  Google Scholar 

  11. Behmanesh, E., Delavar, M.A., Kamalinejad, M., Khafri, S., Shirafkan, H., and Mozaffarpur, S.A., Effect of eryngo (Eryngium caucasicum Trautv) on primary dysmenorrhea: A randomized, double-blind, placebo-controlled study, Taiwan J. Obstet. Gynecol., 2019, vol. 58, p. 227. https://doi.org/10.1016/j.tjog.2019.01.011

    Article  Google Scholar 

  12. Mehdiyeva N.P., Alizade, V.M., Zambrana, N.Y.P., and Bussmann, R.W., Froriepia subpinnata (Ldb.) Bail Apiaceae. In: Bussmann R. (eds.) Ethnobotany of the Caucasus. European Ethnobotany. Springer, Cham., 2017, p. 313. https://doi.org/10.1007/978-3-319-49412-8_49

    Book  Google Scholar 

  13. Morteza-Semnani, K., Saeedi, M., and Akbarzadeh, M., The essential oil composition of Mentha aquatica L., J. Essent. Oil Bear. Plants, 2006, vol. 9, p. 283. https://doi.org/10.1080/0972060X.2006.10643505

    Article  CAS  Google Scholar 

  14. Ahmad, M., Usman, A.R.A., Al-Faraj, A.S., Ahmad, M., Sallam, A., and Al-Wabel, M.I., Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants, 2018, Chemosphere, vol. 194, p. 327. https://doi.org/10.1016/j.chemosphere.2017.11.156

    Article  CAS  Google Scholar 

  15. Chandra, R. and Hoduck, K., Phytoremediation and physiological effects of mixed heavy metals on poplar hybrids, Heavy Metals, Saleh H.E.M., Aglan R. (eds.), London: IntechOpen; 2018, p. 412. https://doi.org/10.5772/intechopen.76348

    Book  Google Scholar 

  16. Porra, R.J., The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b, Photosynth Res., 2002, vol. 73, p. 149. https://doi.org/10.1023/A:1020470224740

    Article  CAS  Google Scholar 

  17. Farhoosh R. and Moosavi, S.M.R., Determination of carbonyl value in rancid oils: A critical reconsideration, J. Food Lipids, 2006, vol. 13, p. 298. https://doi.org/10.1111/j.1745-4522.2006.00053.x

    Article  CAS  Google Scholar 

  18. Ordonez, A.A.L., Gomez, J.D., Vattuone, M.A., and lsla, M.I., Antioxidant activities of Sechium edule (Jacq.) Swartz extracts, Food Chem., 2006, vol. 97, p. 452. https://doi.org/10.1016/j.foodchem.2005.05.024

    Article  CAS  Google Scholar 

  19. Nabavi, S.M., Ebrahimzadeh, M.A., Nabavi, S.F., Fazelian, M., and Eslami, B., In vitro antioxidant and free radical scavenging activity of Diospyros lotus and Pyrus boissieriana growing in Iran, Pharmacogn. Mag., 2009, vol. 5, p. 122.

    Google Scholar 

  20. Sanchez-Moreno, C., Larrauri, J.A., and Saura-Calixto, F., Free radical scavenging capacity of selected red, rose and white wines, J. Agric. Food Chem., 1999, vol. 79, p. 1301. https://doi.org/10.1016/S0963-9969(99)00097-6

    Article  CAS  Google Scholar 

  21. Woodis, Jr. T.C., Hunter, G.B., and Johnson, F.J., Statistical studies of matrix effects on the determination of cadmium and lead in fertilizer and material and plant tissue by flame atomic absorption spectrophotometry, Anal. Chim. Acta, 1977, vol. 90, p. 127. https://doi.org/10.1016/S0003-2670(01)82301-1

    Article  CAS  Google Scholar 

  22. Mani, D., Kumar, C., and Patel, N.K., Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils., Int. J. Phytorem., 2015, vol. 17, p. 256. https://doi.org/10.1080/15226514.2014.883497

    Article  Google Scholar 

  23. Dogan, M., Karatas, M., and Aasim, M., Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study, Ecotoxicol. Environ. Saf., 2018, vol. 148, p. 431. https://doi.org/10.1016/j.ecoenv.2017.10.058

    Article  CAS  Google Scholar 

  24. Cenkci, S., Cigerci, I.H., Yildiz, M., Ozay, C., Bozdag, A., and Terzi, H., Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L., Environ. Exp. Bot., 2010, vol. 67, p. 467. https://doi.org/10.1016/j.envexpbot.2009.10.001

    Article  CAS  Google Scholar 

  25. Ferreyroa, G.V., Lagorio, M.G., Trinelli, M.A., Lavado, R.S., and Molina, F.V., Lead effects on Brassica napus photosynthetic organs, Ecotoxicol. Environ. Saf., 2017, vol. 140, p. 123. https://doi.org/10.1016/j.ecoenv.2017.02.031

    Article  CAS  Google Scholar 

  26. Sharma, P. and Dubey, R.S., Lead toxicity in plants, Braz. J. Plant Physiol., 2005. vol. 17, p. 35. https://doi.org/10.1016/j.bcab.2015.03.004

    Article  CAS  Google Scholar 

  27. Majumdar R., Barchi, B., Turlapati, S.A., Gagne, M., Minocha, R., Long, S., and Minocha, S.C., Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: The pathway is regulated at the post-transcriptional level, Front. Plant Sci., 2016, vol. 7, p. 78. https://doi.org/10.3389/fpls.2016.00078

    Article  Google Scholar 

  28. Haider, S., Kanwal, S., Uddin, F., and Azmat, R., Phytotoxicity of Pb II. Changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris, Pak. J. Biol. Sci., 2006, vol. 9, p. 2062. https://doi.org/10.3923/pjbs.2006.2062.2068

    Article  CAS  Google Scholar 

  29. Jayasri, M.A. and Suthindhiran, K., Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation, Appl. Water Sci., 2017, vol. 7, p. 1247. https://doi.org/10.1007/s13201-015-0376-x

    Article  CAS  Google Scholar 

  30. Singh, S., Parihar, P., Singh, R., Singh, V.P., and Prasad, S.M., Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics, Front. Plant. Sci., 2015, vol. 6, p. 1. https://doi.org/10.3389/fpls.2015.01143

    Article  CAS  Google Scholar 

  31. Frank, H. and Brudvig, G.W., Redox functions of carotenoids in photosynthesis, Biochem., 2004, vol. 43, p. 8607. https://doi.org/10.1021/bi0492096

    Article  CAS  Google Scholar 

  32. Yang, Y., Zhang, L., Huang, X., Zhou, Y., Quan, Q., Li, Y., and Zhu, X., Response of photosynthesis to different concentrations of heavy metals in Davidia involucrate, PLoS One, 2020, vol. 15, p. 6. https://doi.org/10.1371/journal.pone.0228563

    Article  CAS  Google Scholar 

  33. Khan, W., Subhan, S., Shams, D.F., Afridi, S.G., Ullah, R., Shahat, A.A., and Alqahtani, A.S., Antioxidant potential, phytochemicals composition, and metal contents of Datura alba., Bio. Med. Res. Inter., 2019, p. 8. https://doi.org/10.1155/2019/2403718

    Book  Google Scholar 

  34. Kýsa, D., Elmastas, M., Ozturk, L., and Kayir, O., Responses of the phenolic compounds of Zea mays under heavy metal stress, Appl. Biol. Chem., 2016, vol. 59, p. 813. https://doi.org/10.1007/s13765-016-0229-9

    Article  CAS  Google Scholar 

  35. Bystrická, J., Árvay, J., Musilová, J., Vollmannová, A., Tóth, T., and Lenková, M., The investigation of sensitivity of different types of onion to heavy metal intake from contaminated soil, Int. J. Environ. Res., 2016, vol. 10, p. 427. https://doi.org/10.22059/ijer.2016.58762

    Article  Google Scholar 

  36. Tosun, M., Ercisli, S., Sengul, M., Ozer, H., Polat, T., and Ozturk, E., Antioxidant properties and total phenolic content of eight Salvia species from Turkey, Biol. Res., 2009, vol. 41, p. 175. https://doi.org/10.4067/S0716-97602009000200005

    Article  Google Scholar 

  37. Sellal, A., Belattar, R., and Bouzidi, A., Heavy metals chelating ability and antioxidant activity of Phragmites australis stems extracts, Ecol. Eng., 2019, vol. 20, p. 116. https://doi.org/10.12911/22998993/96276

    Article  Google Scholar 

  38. Khalid, N., Noman, A., Aqeel, M., Masood, A., and Tufail, A., Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides, Int. J. Environ. Sci. Technol., 2018, vol. 16, p. 2091. https://doi.org/10.1007/s13762-018-1825-5

    Article  CAS  Google Scholar 

  39. Song, F.L., Gan, R.Y., Zhang, Y., Xiao, Q., Kuang, L., and Li, H.B., Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants, Int. J. Mol. Sci, 2010, vol. 11, p. 2362. https://doi.org/10.3390/ijms11062362

    Article  CAS  Google Scholar 

  40. Zhang, Q., Zhang, M., Ding, Y., Zhou, P., and Fanga, Y., Composition of photosynthetic pigments and photosynthetic characteristics in green and yellow sectors of the variegated Aucuba japonica ‘Variegata’ leaves, Flora, 2018, vol. 240, p. 25.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge Sari Agricultural Sciences and Natural Resources University (Sari, Iran) for financial support of this study.

Funding

Funding was provided by Sari Agricultural Sciences and Natural Resources University.

Author information

Authors and Affiliations

Authors

Contributions

Roghayeh Hasanpour conducted the experiment, gathered and analyzed data, and contributed to the writing and discussion of the manuscript. Faezeh Zaefarian was involved in the conception and design of the experiment, conducted the experiment, and contributed to the discussion of the manuscript. Mohammad Rezvani revised the manuscript and contributed to the discussion of the manuscript. Bahi Jalili involved in the conception and design of the experiment, and revision of the manuscript.

Corresponding author

Correspondence to F. Zaefarian.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanpour, R., Zaefarian, F., Rezvani, M. et al. Physiological Response of Mentha aquatica L., Eryngium caucasicum (Trautv.), and Froriepia subpinnata (Ledeb.) to Lead Stress. Russ J Plant Physiol 69, 95 (2022). https://doi.org/10.1134/S1021443722050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722050089

Keywords:

Navigation