Skip to main content
Log in

Combined Action of Salicylic Acid and Thiourea Alleviated Heat Stress in Maize by Stimulating Varied Antioxidant Response in Tissues

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The combined effect of salicylic acid (SA) and thiourea (TU) on antioxidative response was determined in maize (Zea mays L.) exposed to high temperature stress. Among the varied concentrations used, 200 µM SA + 9 mM TU improved seedling growth in CML 32 (relatively tolerant towards high temperature) and LM 11 (relatively susceptible towards high temperature) genotypes. The increased activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in the roots of CML 32 and shoots of LM 11 seedlings may indicate that SA + TU application induced Halliwell-Asada pathway in these tissues. It might be also suggested that H2O2 detoxification was primarily carried out by SA + TU induced catalase (CAT) and peroxidase (POX) activities in the roots of LM 11 and shoots of CML 32 seedlings. With foliar spray of SA + TU, proline content increased in roots of both the genotypes that might help the maize genotypes in combating heat stress by maintaining osmotic adjustments or by acting as an antioxidant. The contents of H2O2 and malondialdehyde (MDA) decreased in the roots and shoots of foliar sprayed seedlings of both the genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. AMIS Market Monitor, Rome: UN Food Agric. Org., 2020, no. 75.

  2. Lobell, D.B. and Asner, G.P., Climate and management contributions to recent trends in U.S. agricultural yields, Science, 2003, vol. 299. https://doi.org/10.1126/science.1078475

  3. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, p. 405.

    Article  CAS  Google Scholar 

  4. Chugh, V., Gupta, A.K., Grewal, M.S., and Kaur, N., Response of antioxidative and ethanolic fermentation enzymes in maize seedlings of tolerant and sensitive genotypes under short-term waterlogging, Indian J. Exp. Biol., 2012, vol. 50, p. 577.

    CAS  PubMed  Google Scholar 

  5. Kaur, H., Kaur, K., and Gill, G.K., Modulation of sucrose and starch metabolism by salicylic acid induces thermotolerance in spring maize, Russ. J. Plant Physiol., 2019, vol. 66, p. 771.

    Article  CAS  Google Scholar 

  6. Khanna, P., Kaur, K., and Gupta, A.K., Salicylic acid induces differential antioxidant response in spring maize under high temperature stress, Indian J. Exp. Biol., 2016, vol. 54, p. 386.

    PubMed  Google Scholar 

  7. Kaya, C., Sonmez, O., Aydemir, S., Ashraf, M., and Dikilitas, M., Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.), J. Plant Interact., 2013, vol. 8, p. 234.

    Article  CAS  Google Scholar 

  8. Akladious, S.A., Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress, Protoplasma, 2014, vol. 251, p. 625.

    Article  CAS  Google Scholar 

  9. Khanna, P., Kaur, K., and Gupta, A.K., Root biomass partitioning, differential antioxidant system and thiourea spray are responsible for heat tolerance in spring maize, Proc. Natl. Acad. Sci., India, Sect. B, 2017, vol. 87, p. 351.

    CAS  Google Scholar 

  10. Abdelkader, A.F., Hassanein, R.A., and Ali, H., Studies on effects of salicylic acid and thiourea on biochemical activities and yield production in wheat (Triticum aestivum var. Gimaza 9) plants grown under drought stress, Afr. J. Biotechnol., 2012, vol. 11, p. 12728.

    CAS  Google Scholar 

  11. Turner, N.C. and Kramer, P.J., Adaptation of Plants to Water and High Temperature Stress, New York: Wiley, 1980, p. 207.

    Google Scholar 

  12. Esterbaur, H. and Grill, D., Seasonal variation of glutathione and glutathione reductase in seedless of Pices abies, Plant Physiol., 1978, vol. 61, p. 119.

    Article  Google Scholar 

  13. Shannon, L.M., Kay, E., and Law, J.Y., Peroxidase isozymes from horse radish roots. I. Isolation and physical properties, J. Biol. Chem., 1996, vol. 241, p. 2166.

    Article  Google Scholar 

  14. Marklund, S. and Marklund, G., Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem., 1974, vol. 47, p. 166.

    Article  Google Scholar 

  15. Chance, B. and Maehly, A.C., Assay of catalase and peroxidases, Method Enzymol., 1955, vol. 2, p. 764.

    Article  Google Scholar 

  16. Nakano, Y. and Asada, K., Purification of ascorbate peroxidase in spinch chloroplast: its inactivation in ascorbate depleted medium and reactivation by monodehydrascorbate radical, Plant Cell Physiol., 1987, vol. 28, p. 131.

    CAS  Google Scholar 

  17. Sihna, A.K., Colorimetric assay of catalase, Anal. Biochem., 1971, vol. 47, p. 389.

    Google Scholar 

  18. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  Google Scholar 

  19. Law, M.Y., Charles, S.A., and Helliwell, B., Glutathione and ascorbic acid in spinach (Spinacea oleracea) chloroplasts, J. Biochem., 1983, vol. 210, p. 899.

    Article  CAS  Google Scholar 

  20. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  21. Sadeghipour, O. and Aghaei, P., Impact of exogenous salicylic acid application on some traits of common bean (Phaseolus vulgaris L.) under water stress conditions, Int. J. Agric. Crop Sci., 2012, vol. 4, p. 685.

    Google Scholar 

  22. Bartels, D. and Sunkar, R., Drought and salt tolerance in plants, Crit. Rev. Plant Sci., 2005, vol. 24, p. 23.

    Article  CAS  Google Scholar 

  23. Xu, Y.W., Lv, S.S., Zhao, D., Chen, J.W., Yang, W.T., and Wu, W., Effects of salicylic acid on monoterpene production and antioxidant system in Houttuynia cordata, Aftr. J. Biotechnol., 2012, vol. 11, p. 11364.

    Google Scholar 

  24. Kadioglu, A., Saruhan, N., Saglam, A., Terzi, R., and Acet, T., Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system, Plant Growth Regul., 2011, vol. 64, p. 27.

    Article  CAS  Google Scholar 

  25. Asthir, B., Kaur, R., Farooq, M., and Bains, N.S., Exogenous application of thiourea improves the performance of late sown wheat by inducing terminal heat resistance, Int. J. Agric. Biol., 2013, vol. 15, p. 1337.

    CAS  Google Scholar 

  26. Larkindale, J. and Huang, B., Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abcisic acid, calcium, hydrogen peroxide and ethylene, J. Plant Physiol., 2004, vol. 161, p. 405.

    Article  CAS  Google Scholar 

  27. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., and Scott, I.M., Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling, Plant Physiol., 1997, vol. 100, p. 241.

    Article  CAS  Google Scholar 

  28. Agarwal, S., Sairam, R.K., Srivastava, G.C., and Meena, R., Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes, Biol. Plant., 2005, vol. 49, p. 541.

    Article  CAS  Google Scholar 

  29. Srivastava, A.K., Srivastava, S., Penna, S., and D’Souza, S.F., Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea (L.) Czern.), Plant Physiol. Biochem., 2011, vol. 49, p. 676.

    Article  CAS  Google Scholar 

  30. Hassanein, R.A., Amin, A.A.E., Rashad, E.M., and Ali, H., Effect of thiourea and salicylic acid on antioxidant defense of wheat plants under drought stress, Int. J. Chem. Technol., 2015, vol. 7, p. 346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kaur.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: APX—ascorbate peroxidase; CAT—catalase; GR—glutathione reductase; POX—peroxidase; SA—salicylic acid; SOD—superoxide dismutase; TU—thiourea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, P., Kaur, K. & Kaur, G. Combined Action of Salicylic Acid and Thiourea Alleviated Heat Stress in Maize by Stimulating Varied Antioxidant Response in Tissues. Russ J Plant Physiol 68, 463–473 (2021). https://doi.org/10.1134/S1021443721030158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721030158

Keywords:

Navigation