Skip to main content
Log in

Effects of Alkalinity and Acidity of the Root Medium on Defense Systems in Triticum aestivum and Secale cereale

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The leaves of spring wheat (Triticum aestivum L.) and winter rye (Secale cerealе L.) were used to examine the dynamics of peroxidase activity and the content of hydrogen peroxide, proline, flavonoids, and organic acids (oxalic, succinic, malic, and citric) at early stages of alkaline (pH 10) and acidic (pH 3) stresses imposed by the pH change in the root medium. The results are discussed on the basis of oxidative stress theory and the mechanisms of intracellular pH homeostasis. The dynamics of hydrogen peroxide content and the increased peroxidase activity provided evidence for the enhancement of redox processes. The accumulation of low-molecular-weight polyfunctional compounds, such as proline and flavonoids, indicated the mobilization of plant defense systems. At the same time, stress-related adaptive changes differed qualitatively in different treatments: the leaves of wheat plants transferred to acidic media accumulated proline, while alkaline-treated plants accumulated predominantly flavonoids. The peroxidase activation and proline accumulation after pH changes in the root medium were more strongly pronounced in rye than in wheat plants. A comparatively stable trend to the decrease in the total amount of malic, citric, and succinic acids was observed within 24 h after the onset of stress treatment; in rye leaves, this trend was apparent both with acidic and alkaline root media, while it was evident in wheat leaves under acidic pH of the solution. The observed changes in the content of organic acids that are involved in the Krebs cycle are regarded as a manifestation of the pH-stat mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bhuyan, M.H.M.B., Hasanuzzaman, M., Mahmud, J., Hossain, M., Bhuiyan, T.F., and Fujita, M., Unraveling morphophysiological and biochemical responses of Triticum aestivum L. to extreme pH: coordinated actions of antioxidant defense and glyoxalase systems, Plants (Basel), 2019, vol. 8: 24. https://doi.org/10.3390/plants8010024

    Article  CAS  PubMed Central  Google Scholar 

  2. Liu, J., Guo, Q., and Shi, D.C., Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions, Photosynthetica, 2010, vol. 48, p. 278.

    Article  CAS  Google Scholar 

  3. Lv, B.S., Li, X.W., Ma, H.Y., Sun, Y., Wei, L.X., Jian-g, C.J., and Liang, Z.W., Differences in growth and physiology of rice in response to different saline-alkaline stress factors, Agron. J., 2013, vol. 105, p. 1119. https://doi.org/10.2134/agronj2013.0017

    Article  CAS  Google Scholar 

  4. Shi, D. and Sheng, Y., Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors, Environ. Exp. Bot., vol. 54, p. 8. https://doi.org/10.1016/j.envexpbot.2004.05.003

  5. Guo, R., Yang, Z., Li, F., Yan, C., Zhong, X., Liu, Q., Xia, X., Li, H., and Zhao, L., Comparative metabolic reponses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress, BMC Plant Biol., 2015, vol. 15: 170. https://doi.org/10.1186/s12870-015-0546-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Latef, A.A.A. and Tran, L.S., Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress, Front. Plant Sci., 2016, vol. 7: 243. https://doi.org/10.3389/fpls.2016.00243

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shi, Q.H., Zhu, Z.J., LI, J., and Qian, Q.Q., Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots, Agr. Sci. China, 2006, vol. 5, p. 767. https://doi.org/10.1016/S1671-2927(06)60122-3

    Article  CAS  Google Scholar 

  8. Shavrukov, Y. and Hirai, Y., Good and bad protons: genetic aspects of acidity stress responses in plants, J. Exp. Bot., 2016, vol. 67, p. 15. https://doi.org/10.1093/jxb/erv437

    Article  CAS  PubMed  Google Scholar 

  9. Szabados, L. and Savoure, A., Proline: a multifunctional amino acid, Trends Plant Sci., 2009, vol. 15, p. 89. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Demidchik, V., Mechanisms of oxidative stress in plants: from classical chemistry to cell biology, Environ. Exp. Bot., 2015, vol. 109, p. 212. https://doi.org/10.1016/j.envexpbot.2014.06.021

    Article  CAS  Google Scholar 

  11. Noctor, G., Lelarge-Trouverie, C., and Mhamdi, A., The metabolomics of oxidative stress, Phytochemistry, 2015, vol. 112, p. 33. https://doi.org/10.1016/j.phytochem.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Liu, J. and Shi, D.C., Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress, Photosynthetica, 2010, vol. 48, p. 127.

    Article  CAS  Google Scholar 

  13. Van Dongen, J.T., Gupta, K.J., Ramirez-Aguilar, S.J., Nunes-Nesi, A., and Fernie, A.R., Regulation of respiration in plants: a role for alternative metabolic pathways, J. Plant Physiol., 2011, vol. 168, p. 1434. https://doi.org/10.1016/j.jplph.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Shelyakin, M.A., Zakhozhii, I.G., and Golovko, T.K., Changes in respiration and respiratory pathways ratios when the lichens adapt to UV-B radiation, Izv. Ufa Nauch. Tsentra, 2018, no. 3 (5), p. 100.

  15. Sakano, K., Revision of biochemical pH-stat: involvement of alternative pathway metabolism, Plant Cell Physiol., 1998, vol. 3, p. 466. https://doi.org/10.1093/oxfordjournals.pcp.a029393

    Article  Google Scholar 

  16. Reid, R.J. and Smith, F.A., The cytoplasmic pH stat, in Handbook of Plant Growth: pH as the Master Variable in Plant Growth, New York, 2002, p. 49.

  17. Sagisaka, S., The occurrence of peroxide in a perennial plant, Populus gelrica,Plant Physiol., 1976, vol. 57, p. 308. https://doi.org/10.1104/pp.57.2.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bates, L., Waldren, P.P., and Teare, J.D., Rapid determination of proline of water stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  19. Kobayashi, Y., Watanabe, T., Shaff, J.E., Ohta, H., Kochian, L.V., Wagatsuma, T., Kinraide, T.B., and Koyama, H., Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions, Plant Physiol., 2013, vol. 163, p. 180. https://doi.org/10.1104/pp.113.222893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, L., Zhou, Q., Wang, Q., and Huang, X., Combined effect of soil acidification and lead ion on antioxidant system in soybean roots, Chem. Ecol., 2014, vol. 31, p. 123. https://doi.org/10.1080/02757540.2014.917176

    Article  CAS  Google Scholar 

  21. Zelinová, V., Mistrík, I., Pal’ove-Balang, P., and Tamás, L., Peroxidase activity against guaiacol, NAD-H, chlorogenic acid, ferulic acid and coniferyl alcohol in root tips of Lotus japonicus and L. corniculatus grown under low pH and aluminium stress, Biologia, 2010, vol. 65, p. 279.

  22. Minibaeva, F.V. and Gordon, L.Kh., Superoxide production and the activity of extracellular peroxidase in plant tissues under stress conditions, Russ. J. Plant Physiol., 2003, vol. 50, p. 411.

    Article  CAS  Google Scholar 

  23. Zhu, J.K., Plant salt tolerance, Trends Plant Sci., 2001, vol. 6, p. 66. https://doi.org/10.1016/S1360-1385(00)01838-0

    Article  CAS  PubMed  Google Scholar 

  24. Tomar, P., Estimation of some biochemical parameters in Lycopersicon lycopersicum (L.) cv. Damyanti in response to acid rain, Voyager, 2018, vol. 9, p. 34.

    Article  Google Scholar 

  25. Krishnan, N., Dickman, M.B., and Becker, D.F., Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress, Free Radic. Biol. Med., 2008, vol. 44, p. 671. https://doi.org/10.1016/j.freeradbiomed.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  26. Aslam, R., Bostan, N., Nabgha-e-Amen, M.M., and Safdar, W., A critical review on halophytes: salt tolerant plants, J. Med. Plants Res., 2011, vol. 5, p. 7108. https://doi.org/10.5897/JMPRX11.006

    Article  CAS  Google Scholar 

  27. Matysik, J., Alia, A., Bhalu, B., and Mohanty, P., Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants, Curr. Sci., 2002, vol. 82, p. 525.

    CAS  Google Scholar 

  28. Olmos, E. and Hellin, E., Mechanisms of salt tolerance in a cell line of Pisum sativum: biochemical and physiological aspects, Plant Sci., 1996, vol. 120, p. 37. https://doi.org/10.1016/S0168-9452(96)04483-4

    Article  CAS  Google Scholar 

  29. Guo, R., Shi, L., Ding, X., Hu, Y., Tian, S., Yan, D., Shao, S., Gao, Y., Liu, R., and Yang, Y., Effects of saline and alkaline stress on germination, seedling growth, and ion balance in wheat, Agron. J., 2010, vol. 102, p. 1252.

    Article  CAS  Google Scholar 

  30. Zhou, Q. and Yu, B.J., Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed vetiver grass seedlings, Russ. J. Plant Physiol., 2009, vol. 56, p. 678.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Chetina.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Translated by A. Bulychev

Abbreviations: ROS—reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetina, O.A., Botalova, K.I. & Kaigorodov, R.V. Effects of Alkalinity and Acidity of the Root Medium on Defense Systems in Triticum aestivum and Secale cereale. Russ J Plant Physiol 67, 334–343 (2020). https://doi.org/10.1134/S1021443720010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720010033

Keywords:

Navigation