Skip to main content
Log in

Heat Shock-Induced Salt Stress Tolerance in Lentil (Lens culinaris Medik.)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Soil salinity is a major constraint in crop production. Of the different strategies to cope with salt stress, a cross-tolerance strategy is inexpensive and easy to adopt. In this study, we investigated heat shock-induced salinity tolerance mechanism in lentil (Lens culinaris Medik cv. BARI Lentil-7). Six-day-old seedlings were exposed to 100 mM NaCl with or without 4-h heat shock (HS) (40 ± 1°C) for three days. The results showed that 100 mM NaCl reduced chlorophyll content, caused severe oxidative damage by reducing antioxidants, increased the toxic methylglyoxal (MG) content and disrupted ion homeostasis by increasing Na+ in the shoots and decreasing K+ in the roots. Heat shock pre-treatment improved the chlorophyll content and reduced oxidative damage by improving reduced ascorbate content, the GSH/GSSG ratio, catalase and ascorbate peroxidase activity under salt stress. Moreover, heat shock reduced the toxic MG content by upregulating glyoxalase system. Heat shock inhibited Na+ accumulation in the shoots and K+ efflux from the roots, as a result, the Na+/K+ ratio reduced both in the roots and shoots under salt stress. We further investigated the HS-induced changes in H2O2 and MG content. We assumed that the dynamics of H2O2 and MG at 1 h intervals during heat shock play a signaling role in activating antioxidant defense and glyoxalase pathway, as a result, plant showed tolerance to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P., and Khan, M., Productivity enhancement of salt-affected environments through crop diversification, Land Degrad. Dev., 2008, vol. 19, pp. 429–453.

    Article  Google Scholar 

  2. Horie, T., Karahara, I., and Katsuhara, M., Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants, Rice, 2012, vol. 5: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Munns, R. and Tester, M., Mechanism of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  4. Bose, J., Rodrigo-Moreno, A., and Shabala, S., ROS homeostasis in halophytes in the context of salinity stress tolerance, J. Exp. Bot., 2014, vol. 65, pp. 1241–1257.

    Article  CAS  PubMed  Google Scholar 

  5. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Li, Z., Peng, Y., Wang, X., Peng, D., Li, Y., He, X., Zhang, X., Ma, X., Huang, L., and Yan, Y., Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments, Molecules, 2015, vol. 20, pp. 20939–20954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hasanuzzaman, M., Nahar, K., Hossain, M.S., Mahmud, J.A., Rahman, A., Inafuku, M., Oku, H., and Fujita, M., Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants, Int. J. Mol. Sci., 2017, vol. 18: 200.

    Article  CAS  PubMed Central  Google Scholar 

  8. Sankaranarayanan, S., Jamshed, M., and Samuel, M.A., Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response, Nat. Plants, 2015, vol. 1: 15185.

    Article  CAS  PubMed  Google Scholar 

  9. Kaur, C., Kushwaha, H.R., Mustafiz, A., Pareek, A., Sopory, S.K., and Singla-Pareek, S.L., Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule, Front. Plant Sci., 2015, vol. 6: 682.

    PubMed  PubMed Central  Google Scholar 

  10. Atkinson, N.J. and Urwin, P.E., The interaction of plant biotic and abiotic stresses: from genes to field, J. Exp. Bot., 2012, vol. 63, pp. 3523–3544.

    Article  CAS  PubMed  Google Scholar 

  11. Foyer, C.H., Rasool, B., Davey, J.W., and Hancock, R.D., Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation, J. Exp. Bot., 2016, vol. 67, pp. 2025–2037.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu, Y.T. and Kao, C.H., Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings, Plant Soil, 2007, vol. 300, pp. 137–147.

    Article  CAS  Google Scholar 

  13. Chao, Y.Y. and Kao, C.H., Heat shock-induced ascorbic acid accumulation in leaves increases cadmium tolerance of rice (Oryza sativa L.) seedlings, Plant Soil, 2010, vol. 336, pp. 39–48.

    Article  CAS  Google Scholar 

  14. Hossain, M.A., Mostofa, M.G., and Fujita, M., Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings, J. Plant Sci. Mol. Breed., 2013, vol. 2: 2.

    Article  CAS  Google Scholar 

  15. Afzal, F., Khan, T., Khan, A., Khan, S., Raza, H., Ihsan Ahanger, M.A., and Kazi, A.G., Nutrient deficiencies under stress in legumes, in Legumes under Environmental Stress: Yield, Improvement and Adaptations, Azooz, M.M. and Ahmad, P., Eds., Hoboken: Wiley, 2014, pp. 53–65.

    Google Scholar 

  16. Golezani, K.G. and Yengabad, F.M., Physiological responses of lentil (Lens culinaris Medik.) to salinity, Int. J. Agric. Crop Sci., 2012, vol. 4, pp. 1531–1535.

    Google Scholar 

  17. Hossain, M.S., Alam, M.U., Rahman, A., Hasanuzzaman, M., Nahar, K., Al Mahmud, J., and Fujita, M., Use of iso-osmotic solution to understand salt stress responses in lentil (Lens culinaris Medik.), S. Afr. J. Bot., 2017, vol. 113, pp. 346–354.

    Article  CAS  Google Scholar 

  18. Arnon, D.T., Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bates, L.S., Waldren, R.P., and Teari, D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  20. Heath, R.L. and Packer, L., Photo peroxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, C.W., Murphy, T.M., and Lin, C.H., Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation, Funct. Plant Biol., 2003, vol. 30, pp. 955–963.

    Article  CAS  PubMed  Google Scholar 

  22. Nahar, K., Hasanuzzaman, M., Rahman, A., Alam, M.M., Mahmud, J.A., Suzuki, T., and Fujita, M., Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems, Front. Plant Sci., 2016, vol. 7: 1104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Santos, C.V., Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves, Sci. Hortic., 2004, vol. 103, pp. 93–99.

    Article  CAS  Google Scholar 

  25. Nahar, K., Hasanuzzaman, M., and Fujita, M., Roles of osmolytes in plant adaptation to drought and salinity, in Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, Iqbal, N., Nazar, R.A., and Khan, N., Eds., New Delhi: Springer, 2016, pp. 37–68.

    Google Scholar 

  26. Li, Z.G., Duan, X.Q., Min, X., and Zhou, Z.H., Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes, Protoplasma, 2017, vol. 9, pp. 1–12.

    Google Scholar 

  27. Chao, Y.Y., Hsu, Y.T., and Kao, C.H., Involvement of glutathione in heat shock- and hydrogen peroxide-induced cadmium tolerance of rice (Oryza sativa L.) seedlings, Plant Soil, 2009, vol. 318: 37.

    Article  CAS  Google Scholar 

  28. Shabala, S. and Pottosin, I., Regulation of potassium transport in plants under hostile conditions: implication for abiotic and biotic stress tolerance, Physiol. Plant., 2014, vol. 151, pp. 257–279.

    Article  CAS  PubMed  Google Scholar 

  29. Anschütz, U., Becker, D., and Shabala, S., Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment, J. Plant Physiol., 2014, vol. 171, pp. 670–687.

  30. Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A., and Yurin, V., Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment, J. Exp. Bot., 2014, vol. 65, pp. 1259–1270.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We thank Mr. M.H.M. Borhannuddin Bhuyan, Ms. Khursheda Parvin and Mr. Sayed Mohammad Mohsin, Md. Shahadat Hossen, Abdul Awal Choudhury Masud, Faculty of Agriculture, Kagawa University, Japan for a critical review and editing of the manuscript. We also thank Dr. Md. Motiar Rohman, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh for providing lentil seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fujita.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Abbreviations: AO—ascorbate oxidase; APX—ascorbate peroxidase; AsA—ascorbic acid; CAT—catalase; CDNB—1-chloro-2,4-dinitrobenzene; DAB—diaminobenzidine; DHA—dehydroascorbic acid; DHAR—dehydroascorbate reductase; DTNB—5,5-dithio-bis-(2-nitrobenzoic) acid; Gly—glyoxalase; GR—glutathione reductase; MDHAR—monodehydroascorbate reductase; MG—methylglyoxal; SLG—S-D-lactoyl-glutathione; SOD—superoxide dismutase; TBA—thiobarbituric acid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Hasanuzzaman, M., Rahman, A. et al. Heat Shock-Induced Salt Stress Tolerance in Lentil (Lens culinaris Medik.). Russ J Plant Physiol 66, 450–460 (2019). https://doi.org/10.1134/S1021443719030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719030075

Keywords:

Navigation