Skip to main content
Log in

Identification of miRNAs in sweet potato by Solexa sequencing

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small endogenous RNAs, involved in plant growth and development as well as in stress responses. Among them, some are highly evolutionally conserved in the plant kingdom, which provides a powerful strategy for identifying miRNAs in a new species. Sweet potato (Ipomoea batatas L.) is one of the important food crops in the world, but few of its miRNAs have been determined. In this study, a total of 24 conserved miRNAs belonged to 14 miRNA families, and 16 novel miRNAs were identified by deep sequencing. Using previously established protocols, a total of 48 potential target genes were predicted for the conserved and novel miRNAs. These target genes are involved in transcription, metabolism, defense response, oxidationreduction processes, etc. Overall, this study provides information concerning the miRNAs precursors in I. batatas, mature miRNAs, and miRNA targets, and it is valuable as the basis for the future research of miRNA functions in I. batatas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

Expressed Sequence Tag

miRNAs:

microRNAs

nt:

nucleotide

sRNA:

small RNA

snRNA:

small nuclear RNA

snoRNA:

small nucleolar RNA

ncRNAs:

noncoding RNAs

NCBI:

national center for biotechnology information

MFE:

minimum free energy

MFEI:

minimum free energy index

ARF:

auxin response factor

AGO:

Agonaute

SBP:

squamosa promoter-binding-like protein

References

  1. Pashkovskiy, P.P. and Ryazansky, S.S., Biogenesis, evolution, and functions of plant microRNAs, Biochemistry (Moscow), 2013, vol. 78, pp. 627–637.

    Article  CAS  Google Scholar 

  2. Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B., MicroRNAs and their regulatory roles in plants, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 19–53.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, B., Wang, Q., and Pan, X., MicroRNAs and their regulatory roles in animals and plants, J. Cell Physiol., 2007, vol. 210, pp. 279–289.

    Article  CAS  PubMed  Google Scholar 

  4. Kozomara, A. and Griffiths-Jones, S., MiRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res., 2013, vol. 42: D68–73. doi 10.1093/nar/gkt1181

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sunkar, R., Zhou, X., Zheng, Y., Zhang, W., and Zhu, J.K., Identification of novel and candidate miRNAs in rice by high throughput sequencing, BMC Plant Biol., 2008, vol. 8, p. 25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song, C., Wang, C., Zhang, C., Korir, N.K., Yu, H., Ma, Z., and Fang, J., Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliate), BMC Genomics, 2010, vol. 11, p. 431.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao, C.Z., Xia, H., Frazier, T.P., Yao, Y.Y., Bi, Y.P., Li, A.Q., Li, M.J., Li, C.S., Zhang, B.H., and Wang, X.J., Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.), BMC Plant Biol., 2010, vol. 10, p. 3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, R., Marshall, D., Bryan, G.J., and Hornyik, C., Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing, PLoS One, 2013, vol. 8, pp. e57233.

    Article  Google Scholar 

  9. Zhu, Q.H. and Helliwell, C.A., Regulation of flowering time and floral patterning by miR172, J. Exp. Bot., 2010, vol. 62, p. 9.

    Google Scholar 

  10. Sakaguchi, J. and Watanabe, Y., MiR165/166 and the development of land plants, Dev. Growth Differ., 2012, vol. 54, pp. 93–99.

    Article  CAS  PubMed  Google Scholar 

  11. Williams, L., Grigg, S.P., Xie, M., Christensen, S., and Fletcher, J.C., Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes, Development, 2005, vol. 132, pp. 3657–3668.

    Article  CAS  PubMed  Google Scholar 

  12. Guo, H.S., Xie, Q., Fei, J.F., and Chua, N.H., MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development, Plant Cell Online, 2005, vol. 17, pp. 1376–1386.

    Article  CAS  Google Scholar 

  13. Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K., A miRNA involved in phosphate-starvation response in Arabidopsis, Curr. Biol., 2005, vol. 15, pp. 2038–2043.

    Article  CAS  PubMed  Google Scholar 

  14. Sunkar, R., Kapoor, A., and Zhu, J.K., Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance, Plant Cell Online, 2006, vol. 18, pp. 2051–2065.

    Article  CAS  Google Scholar 

  15. Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., and Jin, Y., Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor, BMC Mol. Biol., 2009, vol. 10, p. 29.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin, J.S., Lin, C.C., Lin, H.H., Chen, Y.C., and Jeng, S.T., MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding, New Phytol., 2012, vol. 196, pp. 427–440.

    Article  CAS  PubMed  Google Scholar 

  17. Xie, F., Burklew, C.E., Yang, Y., Liu, M., Xiao, P., Zhang, B., and Qiu, D., De novo sequencing and a comprehensive analysis of purple sweet potato (Ipomoea batatas L.) transcriptome, Planta, 2012, vol. 236, pp. 101–113.

    Article  CAS  PubMed  Google Scholar 

  18. Firon, N., LaBonte, D., Villordon, A., Kfir, Y., Solis, J., Lapis, E., Perlman, T.S., Doron-Faigenboim, A., Hetzroni, A., and Althan, L., Transcriptional profiling of sweet potato (Ipomoea batatas) roots indicates downregulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation, BMC Genomics, 2013, vol. 14, p. 460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, B., Pan, X., Cox, S., Cobb, G., and Anderson, T., Evidence that miRNAs are different from other RNAs, Cell. Mol. Life Sci., 2006, vol. 63, pp. 246–254.

    Article  CAS  PubMed  Google Scholar 

  20. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C., MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants, Cell, 2005, vol. 121, pp. 207–221.

    Article  CAS  PubMed  Google Scholar 

  21. Berezikov, E., Cuppen, E., and Plasterk, R.H.A., Approaches to microRNA discovery, Nat. Genetics, 2006, vol. 38, pp. S2–S7.

    Article  CAS  PubMed  Google Scholar 

  22. Dehury, B., Panda, D., Sahu, J., Sahu, M., Sarma, K., Barooah, M., Sen, P., and Modi, M., In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) expressed sequence tags (ESTs), Plant Signal. Behav., 2013, vol. 8: e26543.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Farh, K.K.-H., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P., The widespread impact of mammalian microRNAs on mRNA repression and evolution, Science, 2005, vol. 310, pp. 1817–1821.

    Article  CAS  PubMed  Google Scholar 

  24. Patanun, O., Lertpanyasampatha, M., Sojikul, P., Viboonjun, U., and Narangajavana, J., Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.), Mol. Biotechnol., 2013, vol. 53, pp. 257–269.

    Article  CAS  PubMed  Google Scholar 

  25. Xie, F., Frazier, T.P., and Zhang, B., Identification, characterization and expression analysis of microRNAs and their targets in the potato (Solanum tuberosum), Gene, 2011, vol. 473, pp. 8–22.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y., Li, K., Chen, L., Zou, Y., Liu, H., Tian, Y., Li, D., Wang, R., Zhao, F., and Brett, J.F., MicroRNA167-directed regulation of the auxin response factors, GmARF8a and GmARF8b, is required for soybean (Glycine max L.) nodulation and lateral root development, Plant Physiol., 2015, doi 10.1104/pp.15.00265

    Google Scholar 

  27. Gursinsky, T., Pirovano, W., Gambino, G., Friedrich, S., Behrens, S.-E., and Pantaleo, V., Homeologs of the Nicotiana benthamiana antiviral ARGONAUTE1 show different susceptibilities to microRNA168-mediated control, Plant Physiol., 2015, vol. 168, pp. 938–952. doi 10.1104/pp.15.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Bian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, X., E, Z., Ma, P. et al. Identification of miRNAs in sweet potato by Solexa sequencing. Russ J Plant Physiol 63, 283–292 (2016). https://doi.org/10.1134/S1021443716020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716020060

Keywords

Navigation