Skip to main content
Log in

Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We applied chlorophyll a fluorescence as a biomarker to assess the growth response and PSII behavior and performance of three pistachio (Pistacia vera) rootstocks to different salt levels after inoculation with arbuscular mycorrhizal fungi Glomus mosseae and compared it with non-mycorrhizal plants (control). Our results confirmed the depressing effect of salt stress on mycorrhization extent and showed that the effect of salinity on colonization rate is completely under the influence of host plant. In this experiment, mycorrhizal symbiosis could enhance plants total dry mass (TDM), electron transfer on the donor and the acceptor side of PSII, decrease the energy dissipation and increase the comprehensive photosynthesis performance under salt stress as well as under normal conditions. We found that both donor and acceptor sides of PSII are the target sides under high salinity in pistachio rootstocks. We also found that performance index is the parameter that better reflects the responses of the studied rootstocks to progressive salt stress. Bane-baqi was less affected by salinity in terms of TDM followed by Sarakhs and Abareqi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS/RC:

absorption flux per reaction center (RC)

AMF:

arbuscular mycorrhizal fungi

DI0/RC:

dissipation of energy per RC

ET0/RC:

electron transport flux per RC

FC:

field capacity

F 0 :

minimal fluorescence yield in the darkadapted state

F m :

maximal fluorescence yield in the darkadapted state

F v :

variable fluorescence

F v/F m :

maximal quantum yield of PSII photochemistry

+M:

mycorrhizal

-M:

non-mycorrhizal

PEA:

plant efficiency analyzer

φEo :

probability that an absorbed photon will move an electron into electron transport further than Q -A

φPo :

maximum quantum yield of primary photochemistry

Ψ0 :

probability that a trapped exiton moves an electron into the electron transport chain beyond Q -A

PIABS :

performance index

RuBP:

ribulose-1,5-bisphosphate

TDM:

total dry mass

TR0/RC:

trapped energy flux per RC

VJ :

relative variable fluorescence at the J-step

References

  1. Munns, R., Comparative physiology of salt and water stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.

    Article  CAS  PubMed  Google Scholar 

  2. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  3. Desingh, D. and Kanagaraj, G., Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties, Gen. Appl. Plant Physiol., 2007, vol. 33, pp. 221–234.

    CAS  Google Scholar 

  4. Turan, M.A., Katkat, V., and Taban, S., Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress, J. Agron., 2007, vol. 6, pp. 137–141.

    Article  CAS  Google Scholar 

  5. Babu, M.A., Singh, D., and Gothandam, K.M., Effect of salt stress on expression of carotenoid pathway genes in tomato, J. Stress Physiol. Biochem., 2011, vol. 7, pp. 87–94.

    Google Scholar 

  6. Strasser, R., Srivastava, A., and Tsimilli-Michael, M., The fluorescence transient as a tool to characterize and screen photosynthetic samples, in Probing Photosynthesis: Mechanisms, Regulation and Adaptation, Yunus, M., Pathre, U., and Mohanty, P., Eds., London, UK: Taylor and Francis, 2000, pp. 445–483.

    Google Scholar 

  7. Strasser, R.J., Srivastava, A., and Tsimilli-Michael, M., Analysis of the chlorophyll a fluorescence transient, in Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Papagrorgiou, G.C. and Govindjee, B.K., Eds., Dordrecht: Springer-Verlag, 2004, pp. 321–362.

    Chapter  Google Scholar 

  8. Stirbet, A. and Govindjee A., On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient, J. Photochem. Photobiol., B: Biol., 2011, vol. 104, pp. 236–257.

    Article  CAS  Google Scholar 

  9. Xia, J., Li, Y., and Zou, D., Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements, Aquat. Bot., 2004, vol. 80, pp. 129–137.

    Article  CAS  Google Scholar 

  10. Kalaji, H.H., Govindjee, B.K., and Koscielniak, J., Effects of salt stress on photosystem II efficiency and CO assimilation of two Syrian barley landraces, Environ. Exp. Bot., 2011, vol. 73, pp. 64–72.

    Article  CAS  Google Scholar 

  11. Jajoo, A., Changes in photosystem II in response to salt stress, Ecophysiology and Responses of Plants under Salt Stress, Ahmad, P., Azooz, M.M., and Prasad, M.N.V., Eds., New York: Springer-Verlag, 2013, pp. 149–168.

    Chapter  Google Scholar 

  12. Eyidogan, F. and Tufan, O.M., Effect of salinity on antioxidant responses of chickpea seedlings, Acta Physiol. Plant., 2007, vol. 29, pp. 485–493.

    Article  CAS  Google Scholar 

  13. Redondo-G–mez, S., Mateos-Naranjo, E., and Davy, A.J., Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides, Ann. Bot., 2007, vol. 100, pp. 555–563.

    Article  Google Scholar 

  14. Ruiz-Lozano, J.M. and Azc–n, R., Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity, Mycorrhiza, 2000, vol. 10, pp. 137–143.

    Article  CAS  Google Scholar 

  15. Al-Karaki, G.N. and Hammad, R., Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress, J. Plant Nutr., 2001, vol. 24, pp. 1311–1323.

    Article  CAS  Google Scholar 

  16. Feng, G., Zhang, F., Li, X., and Tian, C., Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots, Mycorrhiza, 2002, vol. 12, pp. 185–190.

    Article  CAS  PubMed  Google Scholar 

  17. Al-Karaki, G.N., Growth of mycorrhizal tomato and mineral acquisition under salt stress, Mycorrhiza, 2000, vol. 10, pp. 51–54.

    Article  CAS  Google Scholar 

  18. Tsimilli-Michael, M., Eggenberg, P., and Biro, B., Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient OJIP, Appl. Soil Ecol., 2000, vol. 15, pp. 169–182.

    Article  Google Scholar 

  19. Bagheri, V., Shamshiri, M.H., Shirani, H., and Roosta, H.R., Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress, J. Agric. Sci. Tech., 2012, vol. 14, pp. 1591–1604.

    Google Scholar 

  20. Karimi, H.R., Ebadi, A., and Zamani, Z., Effect of water salinity on growth indices and physiolocal parameters in some pistachio rootstocks, J. Plant Nutr., 2011, vol. 34, pp. 935–944.

    Article  CAS  Google Scholar 

  21. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  22. Phillips, J.M. and Haymann, D.S., Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc., 1970, vol. 55, pp. 158–161.

    Article  Google Scholar 

  23. Giovannetti, M. and Mosse, B., An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots, New Phytol., 1980, vol. 84, pp. 489–500.

    Article  Google Scholar 

  24. Jahromi, F., Aroca, R., and Porcel, R., Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants, Microb. Ecol., 2008, vol. 55, pp. 45–53.

    Article  PubMed  Google Scholar 

  25. Shamshiri, M.H., Pourizadi, F., and Karimi, H.R., Role of mycorrhizal symbiosis in growth and salt avoidance of pistachio plants, J. Stress Physiol. Biochem., 2014, vol. 10, pp. 155–167.

    Google Scholar 

  26. Calatayud, A. and Barreno, E., Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation, Plant Physiol. Biochem., 2004, vol. 42, pp. 549–555.

    Article  CAS  PubMed  Google Scholar 

  27. Baker, N.R., Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 89–113.

    Article  CAS  PubMed  Google Scholar 

  28. Redondo-Gomez, S., Wharmby, C., and Castillo, J.M., Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa, Physiol. Plant., 2006, vol. 128, pp. 116–124.

    Article  CAS  Google Scholar 

  29. Baker, N.R. and Rosenqvist, E., Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, J. Exp. Bot., 2004, vol. 55, pp. 1607–1621.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, X.C., Song, F.B., Li, S.Q., Liu, T.D., and Zhou, X., Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress, Plant Soil Environ., 2012, vol. 58, pp. 186–191.

    CAS  Google Scholar 

  31. Havaux, M., Carotenoid oxidation products as stress signals in plants, Plant J., 2014, vol. 79, pp. 597–606.

    Article  CAS  PubMed  Google Scholar 

  32. Aro, E.-M., Virgin, I., and Andersson, B., Photoinhibition of photosystem II. Inactivation, protein damage and turnover, Biochem. Biophys. Acta, 1993, vol. 1143, pp. 113–134.

    CAS  PubMed  Google Scholar 

  33. Pereira, W.E., Siqueira, D.L., and Mart–nez, C.A., Gas exchange and chlorophyll fluorescence in four Citrus rootstocks under aluminium stress, Plant Physiol., 2000, vol. 157, pp. 513–520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Shamshiri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamshiri, M.H., Fattahi, M. Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test. Russ J Plant Physiol 63, 101–110 (2016). https://doi.org/10.1134/S1021443716010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716010155

Keywords

Navigation