Skip to main content
Log in

Extra perspectives of 5-ethynyl-2′-deoxyuridine click reaction with fluorochrome azides to study cell cycle and deoxyribonucleoside metabolism

Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Beginning with the pioneering work of Salic and Mitchison (2008), the application of thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) for the detection of cells replicating DNA is actively expanding. Being incorporated into DNA, this nucleoside after click reaction of azide-alkyne cycloaddition with azides of fluorochromes can be easily detected by fluorescence. Recently, protocols of EdU application in combination with click reaction adapted for plant cells appeared, and they are help for a monitoring S-period of the cell cycle in the root meristems and in vitro cultured cells with the help of a microscope and flow cytometer. In this work, we focused some details of developed methods and their modifications and also recommended new protocols. In particular, we suggested combining EdU incorporation into the cells replicating DNA with subsequent isolation of protoplasts from them and their preparation for the microscopic analysis and flow cytometry. In addition, the method of determination of EdU phosphorylation dynamics in the cells in vivo is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

7-AAD:

7-aminoactinomycin D

BrdU:

5-bromo-2′-deoxyuridine

CC:

cell cycle

DAPI:

4′,6-diamidino-2-phenylindol

DMSO:

dimethylsulfoxide

dT:

thymidine

EdU:

5-ethynyl-2′-deoxyuridine

MMC:

mithramycin A

PBS:

phosphate-buffered saline

PI:

propidium iodide

TK:

thymidine kinase

TPFC:

two-parameter flow cytometry

References

  1. Reichard, P., Interactions between deoxyribonucleotide and DNA synthesis, Annu. Rev. Biochem., 1988, vol. 57, pp. 349–374.

    Article  PubMed  CAS  Google Scholar 

  2. Möhlmann, T., Bernard, C., Hach, S., and Neuhaus, H.E., Nucleoside transport and associated metabolism, Plant Biol., 2010, vol. 12, suppl. 1, pp. 26–34.

    Article  Google Scholar 

  3. Taylor, J.H., Woods, P.S., and Hughes, W.L., The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine, Proc. Natl. Acad. Sci. USA, 1957, vol. 43, pp. 122–128.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Salic, A. and Mitchison, T.J., A chemical method for fast and sensitive detection of DNA synthesis in vivo, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 2415–2420.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kotogány, E., Dudits, D., Horváth, G.V., and Ayaydin, F., A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine, Plant Methods, 2010, vol. 6, no. 6 (5), doi 10.1186/1746-4811-6-5

    Google Scholar 

  6. Cavanagh, B.L., Walker, T., Norazit, A., and Meedeniya, A.C.B., Thymidine analogues for tracking DNA synthesis, Molecules, 2011, vol. 16, pp. 7980–7993.

    Article  PubMed  CAS  Google Scholar 

  7. Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B., A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes, Angew. Chem., 2002, vol. 114, pp. 2708–2711.

    Article  Google Scholar 

  8. Tornøe, C.W., Christensen, C., and Meldal, M., Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, Org. Chem., 2002, vol. 67, pp. 3057–3064.

    Article  Google Scholar 

  9. Vanstraelen, M., Baloban, M., da Ines, O., Cultrone, A., Lammens, T., Boudolf, V., Brown, S.C., de Veylder, L., Mergaert, P., and Kondorosi, E., APC/CCCS52A complexes control meristem maintenance in the Arabidopsis root, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 11 806–11 811.

    Article  CAS  Google Scholar 

  10. Bass, H.W., Wear, E.E., Lee, T. J., Hoffman, G.G., Gumber, H.K., Allen, G.C., Thompson, W.F., and Hanley-Bowdoin, L., A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development, J. Exp. Bot., 2014, doi 10.1093/jxb/ert470

    Google Scholar 

  11. Schenk, R.U. and Hildebrandt, A.C., Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can. J. Bot., 1972, vol. 50, pp. 199–204.

    Article  CAS  Google Scholar 

  12. Rippka, R., Isolation and purification of cyanobacteria, Methods Enzymol., 1988, vol. 167, pp. 3–27.

    Article  PubMed  CAS  Google Scholar 

  13. Gorman, D.S. and Levine, R.P., Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 1965, vol. 54, pp. 1665–1669.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wolcott, R.M. and Colacino, J.M., Detection of thymidine kinase activity using an assay based on the precipitation of nucleoside monophosphates with lanthanum chloride, Anal. Biochem., 1989, vol. 178, pp. 38–40.

    Article  PubMed  CAS  Google Scholar 

  15. Pollard, P.C. and Moriarty, D.J., Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis, Appl. Environ. Microbiol., 1984, vol. 48, pp. 1076–1083.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Watanabe, S., Ohbayashi, R., Shiwa, Y., Noda, A., Kanesaki, Y., Chibazakura, T., and Yoshikawa, H., Light-dependent and asynchronous replication of cyanobacterial multi-copy chromosomes, Mol. Microbiol., 2012, vol. 83, pp. 856–865.

    Article  PubMed  CAS  Google Scholar 

  17. Hua, H. and Kearsey, S.E., Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine, Nucleic Acids Res., 2011, vol. 39: e60, doi 10.1093/nar/gkr063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Gristwood, T., Duggin, I.G., Wagner, M., Albers, S.V., and Bell, S.D., The sub-cellular localization of Sulfolobus DNA replication, Nucleic Acids Res., 2012, vol. 40, pp. 5487–5496.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Swinton, D.C. and Chiang, K.S., Characterization of thymidine kinase and phosphorylation of deoxyribonucleosides in Chlamydomonas reinhardtii, Mol. Gen. Genet., 1979, vol. 176, pp. 399–409.

    Article  PubMed  CAS  Google Scholar 

  20. Hotta, Y. and Stern, H., Inducibility of thymidine kinase by thymidine as a function of interphase stage, J. Cell Biol., 1965, vol. 25, pp. 99–108.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Hofman, J. and Schwarz, O.J., Thymidine phosphorylation in wheat. Analysis of phosphate transfer from ATP to thymidine, Plant Physiol., 1978, vol. 62, pp. 930–932.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Nosov, A.V., Thymidine kinase in higher plant cell: 3. Properties of the enzyme from broad bean seedlings, Russ. J. Plant Physiol., 1995, vol. 42, pp. 663–670.

    CAS  Google Scholar 

  23. Clausen, A.R., Girandon, L., Ali, A., Knecht, W., Rozpedowska, E., Sandrini, M.P.B., Andreasson, E., Munch-Petersen, B., and Piškur, J., Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana, FEBS J., 2012, vol. 279, pp. 3889–3897.

    Article  PubMed  CAS  Google Scholar 

  24. Diermeier-Daucher, S., Clarke, S.T., Hill, D., Vollmann-Zwerenz, A., Bradford, J.A., and Brockhoff, G., Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry, Cytometry, part A, 2009, vol. 75A, pp. 535–546.

    Article  CAS  Google Scholar 

  25. Qu, D., Wang, G., Wang, Z., Zhou, L., Chi, W., Cong, S., Ren, X., Liang, P., and Zhang, B., 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells, Anal. Biochem., 2011, vol. 417, pp. 112–121.

    Article  PubMed  CAS  Google Scholar 

  26. Cieślar-Pobuda, A. and Łos, M.J., Prospects and limitations of “click-chemistry”-based DNA labeling technique employing 5-ethynyl-2′-deoxyuridine (EdU), Cytometry, part A, 2013, vol. 83A, pp. 977–978.

    Article  Google Scholar 

  27. Schubert, I., Schubert, V., and Fuchs, J., No evidence for “break-induced replication” in a higher plant — but break-induced conversion may occur, Front. Plant Sci., 2011, vol. 2, doi 10.3389/fpls.2011.00008

  28. Lucretti, S., Nardi, L., Nisini, P.T., Moretti, F., Gualberti, G., and Doležel, J., Bivariate flow cytometry DNA/BrdUrd analysis of plant cell cycle, Methods Cell Sci., 1999, vol. 21, pp. 155–166.

    Article  PubMed  CAS  Google Scholar 

  29. Galbraith, D.W., Protoplast analysis using flow cytometry and sorting, Flow Cytometry with Plant Cells, Doležel, J., Greilhuber, J., and Suda, J., Eds., Weinheim: Wiley-VCH Verlag, 2007, pp. 231–250.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nosov.

Additional information

Original Russian Text © A.V. Nosov, A.A. Fomenkov, A.S. Mamaeva, A.E. Solovchenko, G.V. Novikova, 2014, published in Fiziologiya Rastenii, 2014, Vol. 61, No. 6, pp. 893–894.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosov, A.V., Fomenkov, A.A., Mamaeva, A.S. et al. Extra perspectives of 5-ethynyl-2′-deoxyuridine click reaction with fluorochrome azides to study cell cycle and deoxyribonucleoside metabolism. Russ J Plant Physiol 61, 899–909 (2014). https://doi.org/10.1134/S1021443714060144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714060144

Keywords

Navigation