Skip to main content
Log in

Effects of static magnetic field pretreatment with and without PEG 6000 or NaCl exposure on wheat biochemical parameters

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In this study, the static magnetic field (SMF) flux of 2.9–4.7 mT was applied to mature embryo explants of Tekirdag and Selimiye wheat cultivars (Triticum aestivum L.) under tissue culture conditions at three different pretreatment times of 0, 2.2, and 19.8 s, at the rate of 1 m/s with and without 60 g/L PEG 6000 or 100 mM NaCl. Changes in different biochemical parameters were investigated. SMF pretreatment with and without 60 g/L PEG 6000 or 100 mM NaCl increased chlorophyll and carotenoid contents, FRAP values, and antioxidant enzyme (SOD, CAT, POX, and APX) activities in all experimental groups except for the activities of Mn-SOD in the cv. Selimiye root samples. Among SOD isozymes, Fe-SOD was affected by SMF stronger than other izozymes. The combinations of SMF pretreatment with and without 60 g/L PEG 6000 or 100 mM NaCl differently affected SOD isozyme activities besides its effects on other biochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAR:

carotenoids

CAT:

catalase

Chl:

chlorophyll; ferric reducing ability of plasma

MF:

magnetic field

NBT:

nitro blue tetrazolium

POX:

peroxidase

SMF:

static MF

SOD:

superoxide dismutase

TPTZ:

2,4,6-tri(2-pyridyl)-s-triazine

References

  1. Galland, P. and Pazur, A., Magnetoreception in plants, J. Plant Res., 2005, vol. 118, pp. 371–389.

    Article  PubMed  Google Scholar 

  2. Rakosy-Tican, L., Aurori, C.M., and Morariu, V.V., Influence of near null magnetic field on in vitro growth of potato and wild Solanum species, Bioelectromagnetics, 2005, vol. 26, pp. 548–557.

    Article  PubMed  Google Scholar 

  3. Celik, O., Büyükuslu, N., Atak, C., and Rzakoulieva, A., The effects of magnetic field on the activity of superoxide dismutase and catalase in Glycine max (L.) Merr. roots, Pol. J. Environ. Stud., 2009, vol. 18, pp. 175–182.

    CAS  Google Scholar 

  4. Radhakrishnan, R. and Kumari, B.D.R., Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean, Plant Physiol. Biochem., 2012, vol. 51, pp. 139–144.

    CAS  PubMed  Google Scholar 

  5. Shine, M.B. and Guruprasad, K.N., Impact of presowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions, Acta Physiol. Plant., 2012, vol. 34, pp. 255–265.

    CAS  Google Scholar 

  6. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  7. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    CAS  PubMed  Google Scholar 

  8. Ozgen, M., Turet, M., Altinok, S., and Sancak, C., Effects callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes, Plant Cell Rep., 1998, vol. 18, pp. 331–335.

    Article  CAS  Google Scholar 

  9. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  10. Lichtenthaler, H.K. and Wellburn, A.R., Determination of total carotenoids and chlorophylls a and b of leaf in different solvents, Biochem. Soc. Trans., 1983, vol. 11, pp. 591–592.

    CAS  Google Scholar 

  11. Benzie, I.F.F. and Strain, J.J., Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the frap assay, Anal. Biochem., 1996, vol. 23, pp. 70–76.

    Article  Google Scholar 

  12. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  13. Dhindsa, R.S., Plumb-Dhindsa, P., and Thorpe, T.A., Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase, J. Exp. Bot., 1981, vol. 32, pp. 93–101.

    Article  CAS  Google Scholar 

  14. Rao, M.V., Paliyath, G., and Ormrod, D.P., Ultraviolet-B and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana, Plant Physiol., 1996, vol. 110, pp. 125–136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  16. Panda, S.K., Singha, L.B., and Khan, M.H., Does aluminum phytotoxicity induce oxidative stress in greengram (Vigna radiate)? Bulg. J. Plant Physiol., 2003, vol. 29, pp. 77–86.

    Google Scholar 

  17. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  18. Chen, Y.P., Li, R., and He, J.M., Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings, Ecotoxicology, 2011, vol. 20, pp. 760–769.

    Article  CAS  PubMed  Google Scholar 

  19. Rodgers, C.T. and Hore, P.J., Chemical magnetoreception in birds: the radical pair mechanism, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 353–360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Timmel, C.R., Till, U., Brocklehurst, B., McLauchlan, K.A., and Hore, P.J., Effects of weak magnetic fields on free radical recombination reactions, Mol. Physics, 1998, vol. 95, pp. 71–89.

    Article  CAS  Google Scholar 

  21. Funk, R.H.W., Monsees, T., and Özkucur, N., Electromagnetic effects — from cell biology to medicine, Prog. Histochem. Cytochem., 2009, vol. 43, pp. 177–264.

    Article  PubMed  Google Scholar 

  22. Wang, H.Y., Zeng, X.B., Guo, S.Y., and Li, Z.T., Effect of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris, Bioelectromagnetics, 2008, vol. 29, pp. 39–46.

    Article  PubMed  Google Scholar 

  23. Molassiotis, A.N., Sotiropoulos, S., Tanou, G., Kofidis, G., Diamantidis, G., and Therios, I., Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol, Biol. Plant., 2006, vol. 50, pp. 61–68.

    Article  CAS  Google Scholar 

  24. Piacentini, M.P., Fraternale, D., Piatti, E., Ricci, D., Vetrano, F., Dacha, M., and Accorsia, A., Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields, Plant Sci., 2001, vol. 161, pp. 45–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sen.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, A., Alikamanoglu, S. Effects of static magnetic field pretreatment with and without PEG 6000 or NaCl exposure on wheat biochemical parameters. Russ J Plant Physiol 61, 646–655 (2014). https://doi.org/10.1134/S1021443714050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714050148

Keywords

Navigation