Skip to main content
Log in

Free galactose and galactosidase activity in the course of flax fiber development

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Composition and content of free monosaccharides and β-galactosidase activity were determined in the course of development of the flax (Linum usitatissimum L.) tissues containing bast fibers. In the stem regions where the fibers were at the stage of formation of the secondary cell wall of gelatinous type, the content of free galactose was high (14 mM) and 13–20 times greater than in the upper part of the stem where the fibers were at the stage of intrusive growth. Pulse-chase experiments demonstrated the differences in the metabolism of individual low-molecular sugars. In respect to glucose and sucrose, all the examined characteristics (content, absolute and specific radioactivity, and the temporal changes of these indices) were identical in the stem regions wherein the fibers were at different stages of development. Labeled galactose was detected only in the stem regions where the fibers were at the stage of secondary cell wall formation. The specific radioactivity of glucose and sucrose reached the maximum immediately after photosynthesis in the presence of 14CO2 and changed in the same way as in the primary products of photosynthesis. The time-course of label incorporation into galactose indicated that this monosaccharide arose as a result of hydrolytic processes. At the stage of secondary cell wall formation, high activity of β-galactosidase was observed, with tissue- and stage-specific fiber β-1,4-galactan as its substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorshkova, T. and Morvan, C., Secondary Cell-Wall Assembly in Flax Phloem Fibres: Role of Galactans, Planta, 2006, vol. 223, pp. 149–158.

    Article  PubMed  CAS  Google Scholar 

  2. Gorshkova, T.A., Wyatt, S.E., Salnikov, V.V., Gibeaut, D.M., Ibragimov, M.R., Lozovaya, V.V., and Carpita, N.C., Cell-Wall Polysaccharides of Developing Flax Plants, Plant Physiol., 1996, vol. 110, pp. 721–729.

    PubMed  CAS  Google Scholar 

  3. Gorshkova, T.A., Chemikosova, S.B., Sal’nikov, V.V., Pavlencheva, N.V., Gur’janov, O.P., Stoll-Smits, T., and van Dam, J.E.G., Occurrence of Cell-Specific Galactan Is Coinciding with Bast Fiber Developmental Transition in Flax, Ind. Crops Prod., 2004, vol. 19, pp. 217–224.

    Article  CAS  Google Scholar 

  4. Gur’janov, O.P., Ibragimova, N.N., Gnezdilov, O.I., and Gorshkova, T.A., Polysaccharides, Tightly Bound to Cellulose of Flax Fibre Cell Wall: Isolation and Identification, Carbohydr. Polymers, 2008.

  5. Gorshkova, T.A., Ageeva, M.V., Sal’nikov, V.V., Pavlencheva, N.V., Snegireva, A.V., Chernova, T.E., and Chemikosova, S.B., Stages of Bast Fiber Development in Linum usitatissimum L., Bot. Zh. (St Petersburg), 2003, vol. 88, no. 12, pp. 1–11.

    Google Scholar 

  6. Gorshkova, T.A., Salnikov, V.V., Chemikosova, S.B., Ageeva, M.V., Pavlencheva, N.V., and van Dam, J.E.G., Snap Point: A Transient Point in Linum usitatissimum Bast Fiber Development, Ind. Crops Prod., 2003, vol. 18, pp. 213–221.

    Article  Google Scholar 

  7. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem., 1956, vol. 28, pp. 350–356.

    Article  CAS  Google Scholar 

  8. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  9. Bradford, M.M., A Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye-Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  10. Gur’janov, O.P., Gorshkova, T.A., Kabel, M., Schols, H.A., and van Dam, J.E.G., MALDI-TOF MS Evidence for the Linking of Flax Bast Fibre Galactan to Rhamnogalacturonan Backbone, Carbohydr. Polymers, 2007, vol. 67, pp. 86–96.

    Article  CAS  Google Scholar 

  11. Kim, H.-O., Hartnett, C., and Scaman, C.H., Free Galactose Content in Selected Fresh Fruits and Vegetables and Soy Beverages, J. Agric. Food Chem., 2007, vol. 55, pp. 8133–8137.

    Article  PubMed  CAS  Google Scholar 

  12. Gross, K.C. and Pharr, D.M., A Potential Pathway for Galactose Metabolism in Cucumis sativus L., a Stachyose Transporting Species, Plant Physiol., 1982, vol. 69, pp. 117–121.

    Article  PubMed  CAS  Google Scholar 

  13. Ordin, L. and Bonner, J., Effect of Galactose on Growth and Metabolism of Avena Coleoptile Sections, Plant Physiol., 1957, vol. 32, pp. 212–215.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto, R., Inouhe, M., and Masuda, Y., Galactose Inhibition of Auxin-Induced Growth of Mono- and Dicotyledonous Plants, Plant Physiol., 1988, vol. 86, pp. 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  15. Maretzki, A. and Thom, M., Characteristics of a Galactose-Adapted Sugarcane Cell Line Grown in Suspension Culture, Plant Physiol., 1978, vol. 61, pp. 544–548.

    Article  PubMed  CAS  Google Scholar 

  16. Philosoph-Hadas, S. and Anaroni, N., Galactose Inhibits the Conversion of 1-Aminocyclopropane-1-Carboxylic Acid to Ethylene in Aged Tobacco Leaf Discs, Plant Physiol., 1987, vol. 83, pp. 8–11.

    Article  PubMed  CAS  Google Scholar 

  17. Sal’nikov, V.V., Ageeva, M.V., Yumashev, N.V., and Lozovaya, V.V., Ultrastructural Analysis of Phloem Fibers, Sov. Plant Physiol., 1993, vol. 40, pp. 458–464.

    Google Scholar 

  18. Gorshkova, T.A., Ageeva, M., Chemikosova, S., and Sal’nikov, V., Tissue-Specific Processes during Cell Wall Formation in Flax Fiber, Plant Biosyst., 2005, vol. 139, pp. 88–92.

    Google Scholar 

  19. Roach, M. and Deyholos, M., Microarray Analysis of Flax (Linum usitatissimum L.) Stems Identifies Transcripts Enriched in Fibre-Bearing Phloem Tissues, Mol. Gen. Genom., 2007, vol. 278, pp. 149–165.

    Article  CAS  Google Scholar 

  20. Seifert, G.J., Nucleotide Sugar Interconversions and Cell Wall Biosynthesis: How to Bring the Inside to the Outside, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 277–284.

    Article  PubMed  CAS  Google Scholar 

  21. Dai, N., Petreikov, M., Portnoy, V., Katzir, N., Pharr, D.M., and Schaffer, A.A., Cloning and Expression Analysis of a UDP-Galactose/Glucose Pyrophosphorylase from Melon Fruit Provides Evidence for the Major Metabolic Pathway of Galactose Metabolism in Raffinose Oligosaccharide Metabolizing Plants, Plant Physiol., 2006, vol. 142, pp. 294–304.

    Article  PubMed  CAS  Google Scholar 

  22. Feusi, M.E.S., Burton, J.D., Williamson, J.D., and Pharr, D.M., Galactosylsucrose Metabolism and UDPGalactose Pyrophosphorylase from Cucumis melo L. Fruit, Physiol. Plant., 1999, vol. 106, pp. 9–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gorshkova.

Additional information

Original Russian Text © P.V. Mikshina, S.B. Chemikosova, N.E. Mokshina, N.N. Ibragimova, T.A. Gorshkova, 2009, published in Fiziologiya Rastenii, 2009, Vol. 56, No. 1, pp. 67–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikshina, P.V., Chemikosova, S.B., Mokshina, N.E. et al. Free galactose and galactosidase activity in the course of flax fiber development. Russ J Plant Physiol 56, 58–67 (2009). https://doi.org/10.1134/S1021443709010099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443709010099

Key words

Navigation