Skip to main content
Log in

Effect of H2O2 on tyrosine phosphorylation of pea proteins

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Changes in tyrosine phosphorylation of soluble polypeptides of pea (Pisum sativum L.) roots were revealed under the action of exogenous hydrogen peroxide in situ and in vitro. The polypeptides whose tyrosine phosphorylation in situ was vanadate-sensitive were identified. A thiol agent dithiothreitol and the antioxidant ascorbic acid reversed the effect of hydrogen peroxide in vitro. The results indicate that tyrosine phosphorylation of pea proteins is a subject to redox regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

PMSF:

phenylmethylsulfonyl fluoride

PVDF:

polyvinyldifluoride (membranes)

ROS:

reactive oxygen species

TBST:

Tris-buffed saline supplemented with Tween 20

TMED:

tetramethylethylene diamine

PTK:

protein tyrosine kinases

PTP:

protein tyrosine phosphatases

References

  1. Pastory, G.M. and Foyer, C.H., Common Components, Networks, and Pathways of Cross-Tolerance to Stress. The Central Role of “Redox” and Abscisic Acid-Mediated Controls, Plant Physiol., 2002, vol. 129, pp. 460–468.

    Article  Google Scholar 

  2. Neill, S., Desikan, R., Clarke, A., Hurst, R.D., and Hancock, J.T., Hydrogen Peroxide and Nitric Oxide as Signalling Molecules in Plants, J. Exp. Bot., 2002, vol. 53, pp. 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  3. Vranová, E., Inzé, D., and van Breusegem, F., Signal Transduction during Oxidative Stress, J. Exp. Bot., 2002, vol. 53, pp. 1227–1236.

    Article  PubMed  Google Scholar 

  4. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., and Scott, I.M., Hydrogen Peroxide-and Glutathione-Associated Mechanisms of Acclimatory Stress Tolerance and Signalling, Physiol. Plant., 1997, vol. 100, pp. 241–254.

    Article  CAS  Google Scholar 

  5. Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P., and Levine, A., The Involvement of Hydrogen Peroxide in the Differentiation of Secondary Walls in Cotton Fibers, Plant Physiol., 1999, vol. 119, pp. 849–858.

    Article  PubMed  CAS  Google Scholar 

  6. Martínez Muñoz, C., van Meeteren, L.A., Post, J.A., Verkleij, A.J., Verrips, C.T., and Boonstra, J., Hydrogen Peroxide Inhibits Cell Cycle Progression by Inhibition of the Spreading of Mitotic CHO Cells, Free Radic. Biol. Med., 2002, vol. 33, pp. 1061–1072.

    Article  PubMed  Google Scholar 

  7. Gupta, R. and Luan, S., Redox Control of Protein Tyrosine Phosphatases and Mitogen-Activated Protein Kinases in Plants, Plant Physiol., 2003, vol. 132, pp. 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, P.T.W., Overview of the Serine/Threonine Phosphatase, Signalling through Protein Phosphatases, Arino, J., Alexander, D.R., and Hohmann, S., Eds., Heidelberg: Springer-Verlag, 2004, pp. 1–20.

    Google Scholar 

  9. Hunter, T., Protein Kinases and Phosphatases: The Yin and Yang of Protein Phosphorylation and Signaling, Cell, 1995, vol. 80, pp. 225–236.

    Article  PubMed  CAS  Google Scholar 

  10. Rudrabhatla, P., Reddy, M.M., and Rajasekharan, R., Genome-Wide Analysis and Experimentation of Plant Serine/Threonine/Tyrosine-Specific Protein Kinases, Plant Mol. Biol., 2006, vol. 60, pp. 293–319.

    Article  PubMed  CAS  Google Scholar 

  11. Mustelin, T. and Hunter, T., Meeting at Mitosis: Cell Cycle-Specific Regulation of c-Src by RPTP{α{, Sci. Signal Transduct. Knowledge Environ., 2002, vol. 115, p. 3.

    Google Scholar 

  12. Monteiro, H.P. and Stern, A., Redox Modulation of Tyrosine Phosphorylation-Dependent Signal Transduction Pathways, Free Radic. Biol. Med., 1996, vol. 21, pp. 323–333.

    Article  PubMed  CAS  Google Scholar 

  13. Thannickal, V.J. and Fanburg, B.L., Reactive Oxygen Species in Cell Signaling, Am. J. Physiol. Lung. Cell Mol. Physiol., 2000, vol. 279, pp. L1005–L1028.

    PubMed  CAS  Google Scholar 

  14. Bellincampi, D., Dipierro, N., Salvi, G., Cervone, F., and de Lorenzo, G., Extracellular H2O2 Induced by Oligogalacturonides Is Not Involved in the Inhibition of the Auxin-Regulated rolB Gene Expression in Tobacco Leaf Explants, Plant Physiol., 2000, vol. 122, pp. 1379–1385.

    Article  PubMed  CAS  Google Scholar 

  15. Fedina, E.O., Karimova, F.G., and Tarchevsky, I.A., Effects of Brassinolide on Tyrosine Phosphorylation of Proteins in Pea Leaves, Biokhimiya, 2006, vol. 71, pp. 525–532.

    Google Scholar 

  16. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  17. Ruff-Jamison, S., Campos-Gonzalez, R., and Glenney, J.R., Jr., Heavy and Light Chain Variable Region Sequences and Antibody Properties of Anti-Phosphotyrosine Antibodies Reveal Both Common and Distinct Features, J. Biol. Chem., 1991, vol. 266, pp. 6607–6613.

    PubMed  CAS  Google Scholar 

  18. Amory, A.M., Ford, L., Pammenter, N.W., and Cresswell, C.F., The Use of 3-Amino-1,2,4-Triazole to Investigate the Short-Term Effects of Oxygen Toxicity on Carbon Assimilation by Pisum sativum Seedlings, Plant, Cell Environ., 1992, vol. 15, pp. 655–663.

    Article  CAS  Google Scholar 

  19. Das, D.K. and Molik, N., Conversion of Death Signal into Survival Signal at Redox Signaling, Biokhimiya, 2004, vol. 69, pp. 16–24.

    Google Scholar 

  20. Dröge, W., Schulze-Osthoff, K., Mihm, S., Galter, D., Schenk, H., Eck, H.-P., Roth, S., and Gmünder, H., Function of Glutathione and Glutathione Disulfide in Immunology and Immunopathology, FASEB J., 1994, vol. 8, pp. 1131–1138.

    PubMed  Google Scholar 

  21. Henzler, T. and Steudle, E., Transport and Metabolic Degradation of Hydrogen Peroxide in Chara coralline: Model Calculations and Measurements with the Pressure Probe Suggest Transport of H2O2 across Water Channels, J. Exp. Bot., 2000, vol. 51, pp. 2053–2066.

    Article  PubMed  CAS  Google Scholar 

  22. Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.I., Grill, E., and Schroeder, J.I., Calcium Channels Activated by Hydrogen Peroxide Mediate Abscisic Acid Signalling in Guard Cells, Nature, 2000, vol. 406, pp. 731–734.

    Article  PubMed  CAS  Google Scholar 

  23. Krutetskaya, Z.I. and Lebedev, O.E., Role of Tyrosine Phosphorylation in Ion Channel Activity in Cell Membranes, St. Petersburg: Aiyu, 1998.

    Google Scholar 

  24. Smirnoff, N., Ascorbic Acid: Metabolism and Functions of a Multi-Facetted Molecule, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 229–235.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © F.G. Karimova, N.V. Petrova, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 3, pp. 365–372.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimova, F.G., Petrova, N.V. Effect of H2O2 on tyrosine phosphorylation of pea proteins. Russ J Plant Physiol 54, 322–328 (2007). https://doi.org/10.1134/S1021443707030053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707030053

Key words

Navigation