Skip to main content
Log in

The brain and memory: The biology of traces of time past

  • Scientific Session of the General Meeting of the Russian Academy of Sciences
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Ginsburg and E. Jablonka, “The Transition to Experiencing: The Evolution of Associative Learning Based on Feeling,” Biol. Theory 2, 231 (2007).

    Article  Google Scholar 

  2. L. Rensing, M. Koch, and A. Becker, “A Comparative Approach to the Principal Mechanisms of Different Memory Systems,” Naturwissenschaften 96, 1373 (2009).

    Article  Google Scholar 

  3. M. Halbwachs, Les Cadres sociaux de la mémoire (Presses Univ. France, Paris, 1925; Novoe Izd., Moscow, 2007).

    Google Scholar 

  4. G. Edelman, Remembered Present: A Biological Theory of Consciousness (Basic Books, New York, 1989).

    Google Scholar 

  5. E. Tulving, “Episodic Memory: From Mind to Brain,” Annu. Rev. Psychol. 53 (2002).

  6. S. Rose, The Making of Memory: From Molecules to Mind (Bantam, London, 1992; Mir, Moscow, 1995).

    Google Scholar 

  7. R. Descartes, Passions of the Soul (London, 1650), pp. 34, 35.

  8. I. Hacking, Rewriting the Soul: Multiple Personality and the Science of Memory (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  9. E. R. Kandel, “The Molecular Biology of Memory Storage: A Dialogue between Genes and Synapses,” Science 294, 1030 (2001).

    Article  Google Scholar 

  10. E. Glassman, “The Biochemistry of Learning: An Evaluation of the Role of RNA and Protei,” Annu. Rev. Biochem. 38, 605 (1969).

    Article  Google Scholar 

  11. N. E. Maleeva, G. L. Ivolgina, K. V. Anokhin, et al., “Analysis of the c-fos Protooncogene Expression in the Rat Cortex during Learning,” Genetika 25, 1119 (1989).

    Google Scholar 

  12. W. Tischmeyer, L. Kaczmarek, R. Strauss, et al., “Accumulation of c-fos mRNA in Rat Hippocampus after Acquisition of a Brightness Discrimination,” Behav. Neural. Biol. 54, 165 (1990).

    Article  Google Scholar 

  13. C. M. Alberini, “Transcription Factors in Long-Term Memory and Synaptic Plasticity,” Physiol. Rev. 89, 121 (2009).

    Article  Google Scholar 

  14. S. W. Flavell and M. E. Greenberg, “Signaling Mechanisms Linking Neuronal Activity to Gene Expression and Plasticity of the Nervous System,” Annu. Rev. Neurosci. 31, 563 (2008).

    Article  Google Scholar 

  15. A. Pfenning, R. Schwartz, and A. Barth, “A Comparative Genomics Approach to Identifying the Plasticity Transcriptome,” BMC Neurosci. 8, 20 (2007).

    Article  Google Scholar 

  16. K. V. Anokhin, “Molecular Scenarios of Long-Term Memory Consolidation,” Zh. Vyssh. Nervn. Deyat. im. Pavlova 47, 262 (1997).

    Google Scholar 

  17. E. D. Holt, Animal Drive and the Learning Process (Holt, New York, 1931), p. 7.

    Google Scholar 

  18. K. V. Anokhin and K. V. Sudakov, “Systems Organization of Behavior: Novelty as the Leading Factor of Expression of Early Genes in the Brain during Learning,” Usp. Fiziol. Nauk 24, 53 (1993).

    Google Scholar 

  19. A. J. Silva, Y. Zhou, T. Rogerson, et al., “Molecular and Cellular Approaches to Memory Allocation in Neural Circuits,” Science 326, 391 (2009).

    Article  Google Scholar 

  20. T. D. Albright, T. M. Jessell, E. R. Kandel, and M. I. Posner, “Neural Science: A Century of Progress and the Mysteries That Remain,” Cell 100, 1 (2000).

    Article  Google Scholar 

  21. O. O. Litvin and K. V. Anokhin, “Memory Reorganization Mechanisms during Acquired Behavioral Experience Retrieval in Chickens: Effects of Protein Synthesis Blockade in the Brain,” Zh. Vyssh. Nervn. Deyat. im. Pavlova 49, 554 (1999).

    Google Scholar 

  22. K. Nader, G. E. Schafe, and J. E. Le Doux, “Fear Memories Require Protein Synthesis in the Amygdala for Reconsolidation After Retrieval,” Nature 406, 722 (2000).

    Article  Google Scholar 

  23. S. J. Sara, “Retrieval and Reconsolidation: Toward a Neurobiology of Remembering,” Learning and Memory 7, 73 (2000).

    Article  Google Scholar 

  24. K. Nader and O. Hardt, “A Single Standard for Memory: The Case for Reconsolidation,” Nature Rev. Neurosci. 10, 224 (2009).

    Article  Google Scholar 

  25. N. C. Tronson and J. R. Taylor, “Molecular Mechanisms of Memory Reconsolidation,” Nature Rev. Neurosci. 8, 262 (2007).

    Article  Google Scholar 

  26. F. C. Bartlett, Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, Cambridge, 1932), p. 311.

    Google Scholar 

  27. O. Hardt, E. O. Einarsson, and K. Nader, “A Bridge Over Troubled Water: Reconsolidation as a Link between Cognitive and Neuroscientific Memory Research Traditions,” Annu. Rev. Psychol. 61, 141 (2010).

    Article  Google Scholar 

  28. A. M. Ivanitskii, “Natural Sciences and the Problem of Consciousness,” Vestn. Ross. Akad. Nauk 74, 716 (2004).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © K.V. Anokhin, 2010, published in Vestnik Rossiiskoi Akademii Nauk, 2010, Vol. 80, No. 5–6, pp. 455–461.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anokhin, K.V. The brain and memory: The biology of traces of time past. Her. Russ. Acad. Sci. 80, 237–242 (2010). https://doi.org/10.1134/S101933161003007X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S101933161003007X

Keywords

Navigation