Skip to main content
Log in

Development of Bacterial Cellulose-Hyaluronic Acid Multicomponent Hydrogels via Click Chemistry for Biomedical Applications

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The cross-linking of bacterial cellulose (BC), hydroxypropyl methylcellulose (HPMC), and hyaluronic acid (HA) accomplished with the Copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was investigated to obtain the multicomponent hydrogels that allow selective control of material properties. Click chemistry is one of many design methodologies that can be used to create hydrogels for multi-component systems. BC, HPMC, and HA are the most preferred and suitable natural polymers for tissue engineering studies. However, in order to combine their properties in a synergistic way, they must be functionalized to interact with each other. In this study, azide-functional HA was achieved by the reaction of hyaluronic acid with 1-azido-2,3-epoxypropane. To obtain multicomponent hydrogel alkyne-terminated cellulose is also prepared. The cellulose and hyaluronic acid functionalization was confirmed by using FTIR and NMR analysis. The crosslinking reaction took place at ambient conditions for 24 h. It was observed that the swelling capacity of the multi-component hydrogel declined with the increasing amount of BC due to its high crosslinking degree. In addition, the porous morphology of hydrogels makes them suitable for wound dressing applications. SEM results revealed that pore size and porosity decreased with increasing BC concentration. MTT assay demonstrated that the hydrogels promote cell proliferation and adhesion for 3T3 cells. In vitro cell culturing within the hydrogel demonstrated good cell spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. H. Dong, L. Zheng, P. Yu, Q. Jiang, Y. Wu, C. Huang, and B. Yin, ACS Sustainable Chem. Eng. 8, 256 (2020).

    Article  CAS  Google Scholar 

  2. R. Shah, R. Vyroubal, H. Fei, N. Saha, T. Kitano, and P. Saha, AIP Conf. Proc. 1662, 040007 (2015).

  3. T. Carvalho, G. Guedes, F. L. Sousa, C. S. R. Freire, and H. A. Santos, Biotechnol. J. 14, 1900059 (2019).

  4. S. Tang, K. Chi, H. Xu, Q. Yong, J. Yang, and J. M. Catchmark, Carbohydr. Polym. 252, 117123 (2021).

  5. M. N. Collins and C. Birkinshaw, Carbohydr. Polym. 92, 1262 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. L. Wang, S. Dong, Y. Liu, Y. Ma, J. Zhang, Z. Yang, W. Jiang, and Y. Yuan, Polymers 12, 1138 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. O. Jeon, S. J. Song, K. J. Lee, M. H. Park, S. H. Lee, S. K. Hahn, S. Kim, and B. S. Kim, Carbohydr. Polym. 70, 251 (2007).

    Article  CAS  Google Scholar 

  8. L. A. Solchaga, J. E. Dennis, V. M. Goldberg, and A. I. Caplan, J. Orthop. Res. 17, 205 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. T. Kutlusoy, B. Oktay, N. K. Apohan, M. Süleymanoğlu, and S. E. Kuruca, Int. J. Biol. Macromol. 103, 366 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. L. A. Pérez, R. Hernández, J. M. Alonso, R. Pérez-González, and V. Sáez-Martínez, Biomedicine 9, 1113 (2021).

    Google Scholar 

  11. S. S. Han, H. Y. Yoon, J. Y. Yhee, M. O. Cho, H. E. Shim, J. E. Jeong, and S. W. Kang, Polym. Chem. 9, 20 (2018).

    Article  CAS  Google Scholar 

  12. B. Oktay, ChemistrySelect 3, 11737 (2018).

    Article  CAS  Google Scholar 

  13. S. Akhan, B. Oktay, O. K. Özdemir, S. Madakbaş, and N. Kayaman-Apohan, Mater. Chem. Phys. 254, 123315 (2020).

  14. L. Zhou, Y. M. Zhai, M. B. Yang, and W. Yang, ACS Sustainable Chem. Eng. 7, 15617 (2019).

    Article  CAS  Google Scholar 

  15. V. G. Muir and J. A. Burdick, Chem. Rev. 121, 10908 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. A. Uliniuc, M. Popa, T. Hamaide, and M. Dobromir, Cellul. Chem. Technol. 46, 1 (2012).

    CAS  Google Scholar 

  17. N. Pahimanolis, A. Sorvari, N. D. Luong, and J. Seppälä, Carbohydr. Polym. 102, 637 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. O. Pinar, G. Bozdağ, İ. Yemişer, E. Büyük, and D. Kazan, Genet. Appl. 4, 38 (2020).

    Google Scholar 

  19. B. Łaskiewicz, J. Appl. Polym. Sci. 67, 1871 (1998).

    Article  Google Scholar 

  20. A. Lepetit, R. Drolet, B. Tolnai, D. Montplaisir, and R. Zerrouki, Polymer 126, 48 (2017).

    Article  CAS  Google Scholar 

  21. S. Manju and K. Sreenivasan, J. Colloid Interface Sci. 359, 318 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Xi, T. Jiang, Y. Yu, J. Yu, M. Xue, N. Xu, and T. J. Webster, Int. J. Nanomed. 14, 6425 (2019).

    Article  CAS  Google Scholar 

  23. I. Youm, V. Agrahari, J. B. Murowchick, and B. B. C. Youan, Pharm. Res. 31, 2439 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. B. Oktay, N. Kayaman-Apohan, M. Süleymanoğlu, and S. Erdem-Kuruca, Mater. Sci. Eng. C 73, 569 (2017).

    Article  CAS  Google Scholar 

  25. K. Sunitha, G. Unnikrishnan, and C. P. Reghunadhan Nair, Polym. Adv. Technol. 30, 435 (2019).

    Article  Google Scholar 

  26. K. Kabiri, H. Omidian, S. A. Hashemi, and M. J. Zohuriaan-Mehr, Eur. Polym. J. 39, 1341 (2003).

    Article  CAS  Google Scholar 

  27. M. N. Collins and C. Birkinshaw, J. Appl. Polym. Sci. 120, 1040 (2011).

    Article  CAS  Google Scholar 

  28. K. R. Coogan, P. T. Stone, N. D. Sempertegui, and S. S. Rao, Eur. Polym. J. 135, 109870 (2020).

  29. B. Oktay, E. Baştürk, N. Kayaman-Apohan, and M. V. Kahraman, Polym. Compos. 34, 1321 (2013).

    Article  CAS  Google Scholar 

  30. M. R. Singh, S. Patel, and D. Singh, Nanobiomater. Soft Tissue Eng. Appl. Nanobiomater. 5, 231 (2016).

    Article  CAS  Google Scholar 

  31. B. Oktay, N. Kayaman-Apohan, S. Erdem-Kuruca, and M. Süleymanoğlu, Polym. Adv. Technol. 26, 978 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Marmara University, Commission of Scientific Research Project (M.U.BAPKO) under grant FEN-C-YLP-130319-0041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dilek Kazan or Nilhan Kayaman Apohan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şeyma Turan Okulmuş, Oktay, B., Kazan, D. et al. Development of Bacterial Cellulose-Hyaluronic Acid Multicomponent Hydrogels via Click Chemistry for Biomedical Applications. Polym. Sci. Ser. A 65, 682–691 (2023). https://doi.org/10.1134/S0965545X23600564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23600564

Navigation