Skip to main content
Log in

Study of Mechanical and Optical Properties of Aligned Multiwall Carbon Nanotubes in Poly(methyl methacrylate) Matrix in Electric and Magnetic Fields

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In this paper, polymer nanocomposite thin films were prepared by solution casting method using poly(methyl methacrylate) as a matrix and multi-walled carbon nanotubes as a filler. The structural, morphological and mechanical properties of nanocomposites have been characterized by Raman and UV–Vis spectroscopy, SEM and DMA. The behavior of the nanocomposites under electric and magnetic fields is discussed in details. The elastic modulus of the nanocomposites in electric field is increased comparing with magnetically and randomly aligned polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. E. Mark, C. Y. Jiang, and M. Y. Tang, Macromolecules 17, 2613 (1984).

    Article  CAS  Google Scholar 

  2. R. A. Kirchh and K. J. Bruza, Prog. Polym. Sci. 26, 300 (1985).

    Google Scholar 

  3. J. Wen and G. L. Wilkes, Chem. Mater. 8, 1667 (1996).

    Article  CAS  Google Scholar 

  4. R. S. Rajaura, S. Srivastava, P. K. Sharma, S. Mathur, R. Rupali, S. S. Sharma, and Y. K. Vijay, Nano-Struct. Nano-Objects 14, 57 (2018).

    Article  CAS  Google Scholar 

  5. R. S. Rajaura, I. Singhal, K. N. Sharma, and S. Srivastav, Rev. Sci. Instrum. 90, 123903 (2019).

    Article  Google Scholar 

  6. P. M. Ajayan and J. M. Tour, Nature 447, 1066 (2007).

    Article  CAS  Google Scholar 

  7. P. M. Ajayan, Chem. Rev. 99, 1787 (1999).

    Article  CAS  Google Scholar 

  8. M. Moniruzzaman and K. I. Winey, Macromolecules 39, 5194 (2006).

    Article  CAS  Google Scholar 

  9. R. H. Baughman, A. A. Zakhidov, and W. A. Heer, Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  10. P. Pötschke, T. D. Fornes, and D. R. Paul, Polymer 43, 3247 (2002).

    Article  Google Scholar 

  11. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer 40, 5967 (1991).

    Article  Google Scholar 

  12. J. B. Bai and A. Allaoui, Composites, Part A 34, 689 (2003).

    Article  Google Scholar 

  13. A. M. K. Esawi and M. M. Farag, Mater. Des. 28, 2394 (2007).

    Article  CAS  Google Scholar 

  14. R. Kamalakaran, M. Terrones, T. Seeger, P. K. Redlich, and M. Rühle, Chem. Appl. Phys. Lett. 77, 3385 (2000).

    Article  CAS  Google Scholar 

  15. S. Kumar, A. Sharma, B. Tripathi, S. Srivastava, S. Agrawal, M. Singh, K. Awasthi, and Y. Vijay, Micron 41, 909 (2010).

    Article  CAS  Google Scholar 

  16. R. S. Rajaura, S. Srivastava, V. Sharma, P. K. Sharma, C. Lal, M. Singh, H. S. Palsania, and Y. K. Vijay, Int. J. Hydrogen Energy 41, 9454 (2016).

    Article  CAS  Google Scholar 

  17. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gunko, Carbon 44, 1624 (2006).

    Article  CAS  Google Scholar 

  18. B. Arash, Q. Wang, and V. K. Varadan, Sci. Rep. 4, 6479 (2014).

    Article  CAS  Google Scholar 

  19. K. T. Lau and D. Hui, Carbon 40, 1605 (2002).

    Article  CAS  Google Scholar 

  20. K. T. Lau, Chem. Phys. Lett. 370, 399 (2003).

    Article  CAS  Google Scholar 

  21. P. Calvert, Nature 339, 210 (1999).

    Article  Google Scholar 

  22. J. Chen, B. Liu, X. Gao, and D. Xu, RSC Adv. 8, 28048 (2018).

  23. P. M. Ajayan, L. S. Schandler, C. Gianaris, and A. Rubio, Adv. Mater. 12, 753 (2000).

    Article  Google Scholar 

  24. J. T. Luo, H. C. Wen, W.-F. Wu, and C. P. Chou, Polym. Compos. 29, 12 (2008).

    Article  Google Scholar 

  25. G. Soni, S. Srivastava, P. Soni, and P. Kalotra, Mater. Res. Express 5 (1), 015302 (2017).

    Article  Google Scholar 

  26. K. S. Rathore, D. Patidar, D. Choudhary, N. S. Saxena, and K. Sharma, AIP Conf. Proc. 1004, 145 (2010).

    Article  Google Scholar 

  27. P. Kalotra, N. Singh, A. Dadhich, S. Srivastava, G. Soni, and Y. K. Vijay, Adv. Sci., Eng. Med. 10, 1 (2018).

    Article  Google Scholar 

  28. H. Kaczmarek, R. Drag, M. Swiaztek, and D. Ołdak, Surf. Sci. 507, 882 (2002).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are also thankful to the Material Science lab developed under TEQIP-II at Govt. Women Engineering College, Ajmer for providing facility to carry out UV–Vis.

Funding

Authors are grateful for the financial support received from Ministry of New and Renewable Energy (MNRE Grant no. 103/245/2015), New Delhi to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pankaj Kalotra or Gyanesh Soni.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalotra, P., Soni, G., Srivastava, S. et al. Study of Mechanical and Optical Properties of Aligned Multiwall Carbon Nanotubes in Poly(methyl methacrylate) Matrix in Electric and Magnetic Fields. Polym. Sci. Ser. A 63, 849–854 (2021). https://doi.org/10.1134/S0965545X2135008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X2135008X

Keywords:

Navigation