Skip to main content
Log in

Fabrication of nanocomposite PAN nanofibers containing MgO and Al2O3 nanoparticles

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

This paper describes the effect of embedding MgO and Al2O3 nanoparticles on the diameter of electrospun composite polyacrylonitrile (PAN) nanofibers. Diameter of nanofibers determines the important properties of the nanofibrous mats used in a variety of developed applications such as tissue engineering scaffolds, drug delivery, catalysis, ultra filtration, sensors, and nanoelectronics. The results showed that the type and amount of nanoparticles dispersed in PAN solutions affect the conductivity as well as the viscosity of the electrospinning solutions. Increasing the amount of MgO and Al2O3 leads to higher conductivity and higher viscosity of the electrospinning solution and ultimately to a smaller nanofiber diameter. Moreover, the results showed that higher conductivity of the electrospinning solution overcomes the effect of higher viscosity. Finally, no interaction was detected between metal oxide nanoparticles and PAN macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Jian, N. Hai Tao, L. Tong, and W. XunGai, Chin. Sci. Bull. 53, 2265 (2008).

    Article  Google Scholar 

  2. F. A. Sheikh, M. A. Kanjwal, S. Saran, W. J. Chung, and H. Kim, Appl. Surf. Sci. 257, 3020 (2011).

    Article  CAS  Google Scholar 

  3. O. S. Yördem, M. Papila, and Y. Z. Menceloğlu, Mater. Des. 29, 34 (2008).

    Article  Google Scholar 

  4. H. Tavanai, R. Jalili, and M. Morshed, Surf. Interface Anal. 41, 814 (2009).

    Article  CAS  Google Scholar 

  5. N. T. Ba Linh, Y. K. Min, H. Y. Song, and B. T. Lee, J. Biomed. Mater. Res. B: Appl. Biomater. 95, 184 (2010).

    Article  Google Scholar 

  6. A. Z. Sadek, C. O. Baker, D. A. Powell, W. Wlodarski, R. B. Kaner, and K. Kalantar-zadeh, IEEE Sens. J. 7, 213 (2007).

    Article  CAS  Google Scholar 

  7. G. T. Christopherson, H. Song, and H. Q. Mao, Biomaterials 30, 556 (2009).

    Article  CAS  Google Scholar 

  8. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett. 90, 1 (2003).

    Article  Google Scholar 

  9. V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Polymer 46, 7191 (2005).

    Article  CAS  Google Scholar 

  10. P. Heikkilä and A. Harlin, eXPRESS Polym. Lett. 3, 437 (2009).

    Article  Google Scholar 

  11. T. Wang and S. Kumar, J. Appl. Polym. Sci. 102, 1023 (2006).

    Article  CAS  Google Scholar 

  12. S. Dadvar, H. Tavanai, and M. Morshed, J. Nanoparticle Res. 13, 5163 (2011).

    Article  CAS  Google Scholar 

  13. M. Skotak, J. Ragusa, D. Gonzalez, and A. Subramanian, Biomed. Mater. 6, 1 (2011).

    Article  Google Scholar 

  14. H. Fong, I. Chun, and D. H. Reneker, Polymer 40, 4585 (1999).

    Article  CAS  Google Scholar 

  15. H. Liu and Y. L. Hsieh, J. Polym. Sci., Part B: Polym. Phys. 40, 2119 (2002).

    Article  CAS  Google Scholar 

  16. V. Beachley and X. Wen, Mater. Sci. Eng. C 29, 663 (2009).

    Article  CAS  Google Scholar 

  17. S. K. Nataraj, B. H. Kim, J. H. Yun, D. H. Lee, T. M. Aminabhavi, and K. S. Yang, Mater. Sci. Eng. B 162, 75 (2009).

    Article  CAS  Google Scholar 

  18. S. Dadvar, H. Tavanai, M. Morshed, and M. Ghiaci, J. Chem. Eng. Data 57, 1456 (2012).

    Article  CAS  Google Scholar 

  19. S. Dadvar, H. Tavanai, and M. Morshed, J. Anal. Appl. Pyrolysis 98, 98 (2012).

    Article  CAS  Google Scholar 

  20. S. Dadvar, H. Tavanai, M. Morshed, and M. Ghiaci, Sep. Purif. Technol. 114, 24 (2013).

    Article  CAS  Google Scholar 

  21. S. Dadvar, H. Tavanai, H. Dadvar, M. Morshed, and F. E. Ghodsi, J. Sol-Gel Sci. Technol. 59, 269 (2011).

    Article  CAS  Google Scholar 

  22. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005).

    Article  CAS  Google Scholar 

  23. C. Drew, X. Wang, L. A. Samuelson, and J. Kumar, J. Macromol. Sci. A 40, 1415 (2003).

    Article  Google Scholar 

  24. R. Kumar, A. Subramania, N. T. Kalyana Sundaram, G. Vijaya Kumar, and I. Baskaran, J. Membr. Sci. 300, 104 (2007).

    Article  CAS  Google Scholar 

  25. Z. Li, G. Su, D. Gao, X. Wang, and X. Li, Electrochim. Acta 49, 4633 (2004).

    Article  CAS  Google Scholar 

  26. T. I. Yang and P. Kofinas, Polymer 48, 791 (2007).

    Article  CAS  Google Scholar 

  27. P. P. Sengupta, P. Kar, and B. Adhikari, Bull. Mater. Sci. 34, 261 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavanai.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadvar, S., Tavanai, H. & Morshed, M. Fabrication of nanocomposite PAN nanofibers containing MgO and Al2O3 nanoparticles. Polym. Sci. Ser. A 56, 358–365 (2014). https://doi.org/10.1134/S0965545X14030043

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14030043

Keywords

Navigation