Skip to main content
Log in

Cooperativity during binding of a ligand to a multidentate oligomer

  • Theory and Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

A matrix method to describe the equilibrium binding of a ligand by a multidentate oligomer with a system of binding centers differing in the affinity for the binding ligand has been proposed. The example of a complexation process simulating the formation of a complex between an oligonucleotide and zinc phthalocyanine ZnPc is considered. With the use of the proposed method, diagrams of the relative contents of different forms of DNA-ligand complexes have been constructed and analyzed. It is shown that the cooperativity of complexation has a considerable effect on the equilibrium of the ligand with the system of nonequivalent centers of binding. The experimental data on changes in the intensity of luminescence in the course of binding between zinc tetrakis(diisopropylguanidinio)phthalocyanine and a DNA molecule with the nucleotide sequence GTTA(GAGTTA)4GG have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Neidle and S. Balasubramanian, Quadruplex Nucleic Acids (The Royal Society of Chemistry, Cambridge, 2006).

    Book  Google Scholar 

  2. S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle, Nucleic Acids Res. 34, 5402 (2006).

    Article  CAS  Google Scholar 

  3. D. J. Patel, A. T. Phan, and V. Kuryavyi, Nucleic Acids Res. 35, 7429 (2007).

    Article  CAS  Google Scholar 

  4. L. Oganesian and T. M. Bryan, Bio Essays 29, 155 (2007).

    CAS  Google Scholar 

  5. M. Fry, Front. Biosci. 12, 4336 (2007).

    Article  CAS  Google Scholar 

  6. A. De Cian, L. Lacroix, C. Douarre, N. TemineSmaali, C. Trentesaux, J.-F. Riou, and J.-L. Mergny, Biochimie 90, 131 (2008).

    Article  Google Scholar 

  7. L. Kelland, Clin. Cancer Res. 13, 4960 (2007).

    Article  CAS  Google Scholar 

  8. C. L. Grand, H. Han, R. M. Munoz, S. Weitman, D. D. von Hoff, L. H. Hurley, and D. J. Bearss, Mol. Cancer Ther. 1, 565 (2002).

    CAS  Google Scholar 

  9. M. A. Read and S. Neidle, Biochemistry 39, 13422 (2000).

    Article  CAS  Google Scholar 

  10. F. X. Han, R. T. Wheelhouse, and L. H. Hurley, J. Am. Chem. Soc. 121, 3561 (1999).

    Article  CAS  Google Scholar 

  11. R. T. Wheelhouse, D. Sun, H. Han, F. X. Han, and L. H. Hurley. J. Am. Chem. Soc. 120, 3261 (1998).

    Article  CAS  Google Scholar 

  12. S. M. Haider, G. N. Parkinson, and S. Neidle, J. Mol. Biol. 326, 117 (2003).

    Article  CAS  Google Scholar 

  13. S. N. Georgiades, N. H. Abd Karim, K. Suntharalingam, and R. Vilar, Angew. Chem., Int. Ed. Engl. 49, 4020 (2010).

    Article  CAS  Google Scholar 

  14. J. Alzeer, B. R. Vummidi, P. J. C. Roth, and N. W. Luedtke, Angew. Chem., Int. Ed. Engl. 48, 9362 (2009).

    Article  CAS  Google Scholar 

  15. T. L. Hill, Cooperativity Theory in Biochemistry. Steady State and Equilibrium Systems (Springer, New York, 1985).

    Book  Google Scholar 

  16. D. M. Crothers, Biopolymers 6, 575 (1968).

    Article  CAS  Google Scholar 

  17. G. Schwarz, Eur. J. Biochem. 12, 442 (1970).

    Article  CAS  Google Scholar 

  18. A. S. Zasedatelev, G. V. Gurskii, and M. V. Vol’kenshtein, Mol. Biol. 5, 245 (1971).

    CAS  Google Scholar 

  19. Yu. D. Nichipurenko and G. V. Gursky, Biophysics (Engl. Transl.) 48, 717 (2003).

    Google Scholar 

  20. J. D. McGhee and P. H. von Hippel, J. Mol. Biol. 86, 469 (1974).

    Article  CAS  Google Scholar 

  21. G. Scatchard, Ann. N. Y. Acad. Sci. 51, 660 (1949).

    Article  CAS  Google Scholar 

  22. M. W. Freyer, R. Buscaglia, K. Kaplan, D. Cashman, L. H. Hurley, and E. A. Lewis, Biophys. J. 92, 2007 (2007).

    Article  CAS  Google Scholar 

  23. Metal Comple x-DNA Interactions, Ed. by N. Nick Hadjiliadis and E. Sletten (Blackwell, 2009), p. 31.

    Google Scholar 

  24. H. Yaku, T. Murashima, T. Miyoshi, and N. Sugimoto, Molecules 17, 10586 (2012).

    Article  CAS  Google Scholar 

  25. Yu. D. Nechipurenko, A. M. Wolf, and Yu. M. Yevdokimov, Biophysics (Engl. Transl.) 48, 746 (2003).

    Google Scholar 

  26. A. G. Kudrev, Polym. Sci., Ser. A 42, 527 (2000).

    Google Scholar 

  27. A. G. Kudrev, Russ. J. Gen. Chem. 72, 1501 (2002).

    Article  CAS  Google Scholar 

  28. P. Bucek, R. Gargallo, and A. Kudrev, Anal. Chim. Acta 683, 69 (2010).

    Article  CAS  Google Scholar 

  29. R. Gargallo, R. Eritya, and A. G. Kudrev, Russ. J. Gen. Chem. 80, 485 (2010).

    Article  CAS  Google Scholar 

  30. A. G. Kudrev, Biophysics (Engl. Transl.) 57, 305 (2012).

    Article  CAS  Google Scholar 

  31. A. G. Kudrev, Russ. J. Gen. Chem. 75, 1318 (2005).

    Article  CAS  Google Scholar 

  32. D. W. Marquardt, J. Soc. Ind. Appl. Math. 2, 431 (1963).

    Google Scholar 

  33. M. Maeder and A. D. Zuberbuhler, Anal. Chem. 62, 2220 (1990).

    Article  CAS  Google Scholar 

  34. J. J. More, in The Levenberg-Marquardt Algorithm: Implementation and Theory. Numerical Analysis, Ed. by G. A. Watson (Springer, New York, 1977), p. 105.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kudrev.

Additional information

Original Russian Text © A.G. Kudrev, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 10, pp. 1245–1254.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudrev, A.G. Cooperativity during binding of a ligand to a multidentate oligomer. Polym. Sci. Ser. A 55, 586–594 (2013). https://doi.org/10.1134/S0965545X13090022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13090022

Keywords

Navigation