Skip to main content
Log in

Self-assembly of an amphiphilic diblock copolymer in aqueous solutions: Effect of linear charge density of an ionogenic block

  • Polyelectrolytes
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The effect of linear charge density of the ionogenic block on the self-assembly of the amphiphilic diblock copolymer based on polystyrene and poly(4-vinylpyridine) partially alkylated by ethyl bromide in aqueous solutions at pH 9 is studied by UV spectrophotometry and dynamic and static light scattering. During dispersion in water, the diblock copolymer forms micelles composed of the hydrophobic polystyrene core and the amphiphilic lyophilizing corona consisting of N-ethyl-4-vinylpyridinium bromide ionic units and uncharged units of 4-vinylpyridine. It is shown that with a change in the fraction of charged units in the lyophilizing block from 30 to 90 mol %, the thermodynamic quality of the solvent with respect to micelles is slightly monotonically improved and the hydrodynamic sizes of micelles in 0.05 M NaCl are increased. At the same time, such properties as the weight-average degree of aggregation of macromolecules in a micelle, the dimensions of the corona in 0.05 M NaCl, and the dispersion stability of micelles in aqueous-saline solution abruptly change when the content of charged units in the lyophilizing block is 60–70 mol %. After addition of oppositely charged polyelectrolytes or low-molecular-mass surfactants into the micellar solution, polyelectrolyte complexes form and the solubility of these complexes in an excess oppositely charged component likewise changes abruptly with variation in the fraction of charged units in the range from 60 to 70 mol %. A qualitative description is advanced to explain the effect of linear charged density of the lyophilizing block on the self-assembly and complexing behavior of diblock copolymers in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Forster, V. Abetz, and A. H. E. Muller, Adv. Polym. Sci. 166, 173 (2004).

    Google Scholar 

  2. M. A. Cohen Stuart, B. Hofs, I. K. Voets, and A. Keizer, Curr. Opin. Colloid Interface Sci. 10, 30 (2005).

    Article  Google Scholar 

  3. M. Ballauff, Prog. Polym. Sci. 32, 1135 (2007).

    Article  CAS  Google Scholar 

  4. D. D. Bendejacq, V. Ponsinet, and M. Joanicot, Langmuir 21, 1712 (2005).

    Article  CAS  Google Scholar 

  5. D. D. Bendejacq and V. Ponsinet, J. Phys. Chem. B 112, 7996 (2008).

    Article  CAS  Google Scholar 

  6. N. P. Shusharina, P. Linse, and A. R. Khokhlov, Macromolecules 33, 3892 (2000).

    Article  CAS  Google Scholar 

  7. Y. Lauw, F. A. M. Leermakers, M. A. Cohen Stuart, et al., Macromolecules 39, 3628 (2006).

    Article  CAS  Google Scholar 

  8. M. Burkhardt, N. Martinez-Castro, S. Tea, et al., Langmuir 23, 12864 (2007).

    Article  CAS  Google Scholar 

  9. C. Wang, P. Ravi, K. C. Tam, and L. H. Gan, J. Phys. Chem. B 108, 1621 (2004).

    Article  CAS  Google Scholar 

  10. W. Groenewegen, S. U. Egelhaaf, A. Lapp, and J. R. C. Maarel, Macromolecules 33, 3283 (2000).

    Article  CAS  Google Scholar 

  11. F. Checot, A. Brulet, Ju. Oberdisse, et al., Langmuir 21, 4308 (2005).

    Article  CAS  Google Scholar 

  12. O. Colombani, M. Ruppel, M. Burkhardt, et al., Macromolecules 40, 4351 (2007).

    Article  CAS  Google Scholar 

  13. J. Yao, P. Ravi, K. C. Tam, and L. H. Gan, Langmuir 20, 2157 (2004).

    Article  CAS  Google Scholar 

  14. M. A. Crichton and S. R. Bhatia, J. Appl. Polym. Sci. 93, 490 (2004).

    Article  CAS  Google Scholar 

  15. F. Uhlik, K. Jelinek, Z. Limpouchova, and K. Prochazka, Macromolecules 41, 3711 (2008).

    Article  CAS  Google Scholar 

  16. M. A. Crichton and S. R. Bhatia, Langmuir 21, 10028 (2005).

    Article  CAS  Google Scholar 

  17. H. Muller, W. Leube, K. Tauer, et al., Macromolecules 30, 2288 (1997).

    Article  Google Scholar 

  18. J. Zhu, A. Eisenberg, and R. B. Lennox, J. Am. Chem. Soc. 113, 5583 (1991).

    Article  CAS  Google Scholar 

  19. S. G. Starodubtzev, Yu. E. Kirsh, and V. A. Kabanov, Eur. Polym. J. 10, 739 (1974).

    Article  Google Scholar 

  20. P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, et al., Polymer Science, Ser. A 46, 485 (2004) [Vysokomol. Soedin., Ser. A 46, 799 (2004)].

    Google Scholar 

  21. Micellization, Solubilization, and Microemulsions, Ed. by K. Mittall (Plenum, New York, 1977; Mir, Moscow, 1980).

    Google Scholar 

  22. H. H. Hooper, S. Beltran, A. P. Sassi, et al., J. Chem. Phys. 93, 2715 (1990).

    Article  CAS  Google Scholar 

  23. A. Topp, L. Belkoura, and D. Woermann, Macromolecules 29, 5392 (1996).

    Article  CAS  Google Scholar 

  24. A. R. Khokhlov, S. G. Starodubtzev, and V. V. Vasilevskaya, Adv. Polym. Sci. 109, 123 (1993).

    CAS  Google Scholar 

  25. A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  26. E. A. Lysenko, T. K. Bronich, A. Eisenberg, et al., Macromolecules 31, 4516 (1998).

    Article  CAS  Google Scholar 

  27. V. A. Kabanov, Usp. Khim. 74, 5 (2005).

    Google Scholar 

  28. A. B. Zezin and V. A. Kabanov, Usp. Khim. 51, 1447 (1982).

    CAS  Google Scholar 

  29. V. A. Kabanov and A. B. Zezin, Sov. Sci. Rev., B 4(9), 207 (1982).

    CAS  Google Scholar 

  30. P. S. Chelushkin, E. A. Lysenko, T. K. Bronich, et al., J. Phys. Chem. B 111, 8419 (2007).

    Article  CAS  Google Scholar 

  31. D. V. Pergushov, I. A. Babin, F. A. Plamper, et al., Dokl. Akad. Nauk 425, 343 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lysenko.

Additional information

Original Russian Text © A.I. Kulebyakina, E.A. Lysenko, P.S. Chelushkin, A.V. Kabanov, A.B. Zezin, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 6, pp. 908–920.

This work was supported by the Russian Foundation for Basic Research (project no. 06-03-90153-NNF_a) and the Ministry of Education and Science of the Russian Federation (State Contract 02.740.11.0266).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulebyakina, A.I., Lysenko, E.A., Chelushkin, P.S. et al. Self-assembly of an amphiphilic diblock copolymer in aqueous solutions: Effect of linear charge density of an ionogenic block. Polym. Sci. Ser. A 52, 574–585 (2010). https://doi.org/10.1134/S0965545X10060027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10060027

Keywords

Navigation