Skip to main content
Log in

TIPS RAS GTL technology: Determination of design

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Michelin, G. I. Lin, and A. Ya. Rozovskii, Khim. Prom-st’., No. 1, 11 (1984).

    Google Scholar 

  2. A. Ya. Rozovskii, Kinet. Catal. 44, 360 (2003).

    Article  CAS  Google Scholar 

  3. G. I. Lin, P. V. Samokhin, I. A. Belostotskii, et al., in Proceedings of Nikolai Plate’s 80th Birthday Scientific Conference at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences: Abstracts of Papers (Moscow, 2014), p. 52 [in Russian].

    Google Scholar 

  4. Aspen Properties User Guide (Aspen Technology, 2000).

  5. T. Laursen, P. Rasmussen, and S. I. Andersen, J. Chem. Eng. Data 47, 198 (2002).

    Article  CAS  Google Scholar 

  6. H. J. Song, H. T. Zhang, W. Y. Ying, and D. Y. Fang, J. East China Univ. Sci. Technol. 33, 301 (2007).

    CAS  Google Scholar 

  7. P. Aakko-Saksa, P. Koponen, J. Kihlman, et al., VTT Working Papers, vol. 187: Biogasoline Options for Conventional Spark-Ignition Cars (VTT, Espoo, 2011).

    Google Scholar 

  8. Synthetic fuels, Exxon Mobil. http://corporate.exxonmobil. com/en/company/worldwide-operations/catalystsand-licensing/synthetic-fuels. Accessed March 28, 2016.

  9. S. A. Tabak and S. Yurchak, Catal. Today 6, 307 (1990).

    Article  CAS  Google Scholar 

  10. S. Yurchak, Stud. Surf. Sci. Catal. 36, 251 (1988).

    Article  CAS  Google Scholar 

  11. T. Helton and M. Hindman, GTL Technology Forum 2014 (Houston, 2014).

    Google Scholar 

  12. N. V. Engel’, L. E. Kruglova, M. N. Frid, I.L. Alexandrova, V.I. Prokhorenko, S.N. Khadzhiev, L.G. Agabalyan, RU Patent No. 1 153 501 (1996).

  13. G. I. Lin, Yu. A. Kolbanovskii, A. Ya. Rozovskii, et al., RU Patent No. 2 196 761 (2003).

  14. E. V. Slivinskii, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2 248 341 (2003).

  15. S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No.. 2 442 650 (2010).

  16. S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2 442 767 (2010).

  17. S. N. Khadzhiev, N. V. Kolesnichenko, G. I. Lin, et al., RU Patent No. 2 015 141 374 (2015).

  18. G. Bellussi, R. Millini, and P. Pollesel, J. Catal. 328, 11 (2015).

    Article  CAS  Google Scholar 

  19. Haldor Topsoe A/S. EUR 11808 Selective hydrocarbon synthesis: Demonstration project (1988)

  20. F. Joensen, in Proceedings of DTU International Energy Conference, 10–12 September 2013, Lyngby, Denmark.

    Google Scholar 

  21. H. L. Fang,, M. Ben-Reuven R. E. Boyle, and R. M. Koros, US Patent No. 2012/0 116 137 (2012).

  22. The Primus Gas-to-Gasoline System. http://www.primusge.com/wp-content/uploads/2015/06/Primus-Green-Energy-Gasoline-Brochure.pdf. Accessed April 7, 2016.

  23. V. M. Mysov, K. G. Ione, and V. N. Parmon, RU Patent No. 2 143 417 (1999).

  24. V. M. Mysov and K. G. Ione, RU Patent No. 2 284 312 (2005).

  25. V. M. Mysov, V. G. Stepanov, and K. G. Ione, RU Patent No. 2 339 603 (2008).

  26. V. M. Mysov, V. G. Stepanov, and K. G. Ione, RU Patent No. 2 375 407 (2009).

  27. K. G. Ione, V. M. Mysov, P. A. Savin, and E. A. Ryzhikov, RU Patent No. 2 510 388 (2014).

  28. V. M. Mysov, V. P. Lukashov, V. V. Fomin, et al., RU Patent No. 2 473 663 (2013).

  29. V. M. Mysov, V. G. Stepanov, and K. G. Ione, RU Patent No. 2 342 354 (2008).

  30. http://www.myshared.ru/slide/282506. Accessed April 7, 2016.

  31. S. Schmidt, M. Kuschel, P. Seifert, and B. Meyer, in Proceedings of the 7th International Freiberg Conference on IGCC & XtL Technologies, 7–11 June 2015, Huhhot, Inner Mongolia, China, p. 7.

    Google Scholar 

  32. http://www.cac-chem.de/ru/Portaldata/1/Resources/publikationen/cac_stf_der.pdf. Accessed March 28, 2016.

  33. J. Engelmann, G. Falkevich, and R. T. Sarsenov, US Patent No. 2 780 483 (2009).

  34. R. Stahlschmidt, S. Krzack, and B. Meyer, in Proceedings of FNR Symposium “New Biofuels”, Berlin, 23-24 June 2010.

    Google Scholar 

  35. R. Stahlschmidt, P. Seifert, M. Kuschel, and B. Meyer, in Proceedings of the 6th International Freiberg Conference on IGCC & XtL Technologies, 19–22 May 2014, Dresden/Radelbeul, Germany, p. 19.

    Google Scholar 

  36. E. Dinjus and N. Dahmen, Motortech. Z. 71, 7 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Peresypkina.

Additional information

Original Russian Text © S.N. Khadzhiev, M.V. Magomedova, E.G. Peresypkina, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 6, pp. 567–577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzhiev, S.N., Magomedova, M.V. & Peresypkina, E.G. TIPS RAS GTL technology: Determination of design. Pet. Chem. 56, 788–797 (2016). https://doi.org/10.1134/S0965544116090097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116090097

Keywords

Navigation