Skip to main content
Log in

Asymmetric track membranes: Relationship between nanopore geometry and ionic conductivity

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The revealing of the “diodelike” properties of electrolyte-filled asymmetric nanopores in track membranes has given significant impetus to a detailed study of the properties of “track” nanocapillaries. Studying the behavior of electrolyte solutions in nanovolumes of a given geometry is very important for many applications, such as nanofluid technology, the resistive pulse method for detecting colloidal particles and molecules, modeling of biological membranes, etc. An attempt to find a quantitative relationship between the geometric shape of asymmetric nanopores and asymmetry in electrical conductivity has been made in this paper. The method of chemical etching in the presence of a surfactant was used for the formation of nanopores with different profiles. The pore structure was studied by electron microscopy. It has been found that the rectification ratio increases with the membrane thickness and depends strongly on the curvature of the pore profile in the selective layer. The maximum of the rectification has been observed in a 0.05–0.1M KCl. Simulation of the ionic conductivity of asymmetric nanopores by the Poisson-Nernst-Planck equation qualitatively explains the observed behavior. The effect of the asymmetry of electrical conductivity is well expressed even in cases when the pore radius in the selective layer is substantially greater than the Debye length. The modification of the pore surface by grafting of aminopropyltriethoxysilane results in the sign inversion of electric charge and a sharp change in the current-voltage characteristics of the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Dekker, Nat. Nanotechn. 2, 209 (2007).

    Article  CAS  Google Scholar 

  2. R. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008).

    Article  CAS  Google Scholar 

  3. Y. Choi, L. A. Baker, H. Hillebrenner, and C. R. Martin, Phys. Chem. Chem. Phys. 8, 4976 (2006).

    Article  CAS  Google Scholar 

  4. K. Healy, B. Schiedt, and A. Morrison, Nanomedicine 2, 875 (2007).

    Article  CAS  Google Scholar 

  5. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids (University of California Press, Berkeley, 1975).

    Google Scholar 

  6. C. A. Pasternak, C. L. Bashford, Y. E. Korchev, et al., Colloid Surf. A 77, 119 (1993).

    Article  Google Scholar 

  7. A. A. Lev, Y. E. Korchev, T. K. Rostovtseva, et al., Proc. R. Soc. London, Ser. B 252, 187 (1993).

    Article  CAS  Google Scholar 

  8. T. K. Rostovtseva, C. L. Bashford, G. M. Alder, et al., J. Membr. Biol. 51 29 (1996).

    Article  Google Scholar 

  9. Y. E. Korchev, C. L. Bashford, G. M. Alder, et al., FASEB J. 11, 600 (1997).

    CAS  Google Scholar 

  10. R. Spohr, Radiat. Meas. 40, 191 (2005).

    Article  CAS  Google Scholar 

  11. P. Yu. Apel, Yu. E. Korchev, Z. Siwy, et al., Nucl. Instrum. Meth. Phys. Res. B 184, 337 (2001).

    Article  CAS  Google Scholar 

  12. Z. Siwy, Y. Gu, H. Spohr, et al., Europhys. Lett. 60, 349 (2002).

    Article  CAS  Google Scholar 

  13. Z. Siwy, P. Apel, D. Baur, et al., Surf. Sci. 532, 1061 (2003).

    Article  Google Scholar 

  14. D. Woermann, Nucl. Instrum. Meth. Phys. Res. B 194, 458 (2002).

    Article  CAS  Google Scholar 

  15. B. Schiedt, K. Healy, A. P. Morrison, et al., Nucl. Instrum. Meth. Phys. Res. B 236, 109 (2005).

    Article  CAS  Google Scholar 

  16. E. A. Heins, Z. Siwy, L. A. Baker, and C. R. Martin, Nano Lett. (2005).

  17. Z. Siwy, I. D. Kosinska, A. Fulinski, and C. R. Martin, Phys. Rev. Lett. 94, 048102 (2005).

    Article  CAS  Google Scholar 

  18. I. D. Kosinska and A. Fulinski, Phys. Rev. E 72, 011201 (2005).

    Article  CAS  Google Scholar 

  19. J. Cervera, B. Schiedt, R. Neumann, et al., J. Chem. Phys. 124, 104706 (2006).

    Article  Google Scholar 

  20. C. C. Harrell, Z. S. Siwy, and C. R. Martin, Small 2, 194 (2006).

    Article  CAS  Google Scholar 

  21. P. Scopece, L. A. Baker, P. Ugo, and C. R. Martin, Nanotechnology 17, 3951 (2006).

    Article  CAS  Google Scholar 

  22. W. Guo, J. Xue, L. Wang, and Y. Wang, Nucl. Instrum. Meth. Phys. Res. B 266, 3095 (2008).

    Article  CAS  Google Scholar 

  23. C. C. Harrell, Y. Choi, L. P. Horne, et al., Langmuir 22, 10837 (2006).

    Article  CAS  Google Scholar 

  24. Z. S. Siwy, Adv. Func. Mater. 16, 735 (2006).

    Article  CAS  Google Scholar 

  25. X. Wang, J. Xue, L. Wang, et al., J. Phys. D: Appl. Phys. 40, 7077 (2007).

    Article  CAS  Google Scholar 

  26. Q. Liu, Y. Wang, W. Guo, et al., Phys. Rev. E 75, 051201 (2007).

    Article  Google Scholar 

  27. P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, et al., Nanotechnology 18, 305302 (2007).

    Article  Google Scholar 

  28. I. Vlassiouk and Z. S. Siwy, Nano Lett. 7, 552 (2007).

    Article  CAS  Google Scholar 

  29. D. Constantin and Z. Siwy, Phys. Rev. E 76, 041202 (2007).

    Article  Google Scholar 

  30. I. D. Kosinska, I. Goychuk, M. Kostur, et al., Phys. Rev. E 77, 031131 (2008).

    Article  CAS  Google Scholar 

  31. I. Vlassiouk, S. Smirnov, and Z. S. Siwy, ACS Nano 2, 1589 (2007).

    Article  Google Scholar 

  32. P. Ramirez, P. Yu. Apel, J. Cervera, and S. Mafe, Nanotechnology 19, 315707 (2008).

    Article  Google Scholar 

  33. S. Qian, S. W. Joo, Y. Ai, et al., J. Coll. Interface Sci. 329, 376 (2009).

    Article  CAS  Google Scholar 

  34. P. Yu. Apel, I. V. Blonskaya, O. L. Orelovitch, and S. N. Dmitriev, Nucl. Instrum. Meth. Phys. Res. B 267, 1023 (2009).

    Article  CAS  Google Scholar 

  35. M. L. Kovarik, K. Zhou, and S. C. Jacobson, J. Phys. Chem. B 113, 15960 (2009).

    Article  CAS  Google Scholar 

  36. D. Fink, J. Vacik, V. Hnatowicz, et al., Radiat. Effects Def. Solids 165, 343 (2010).

    Article  CAS  Google Scholar 

  37. M. Ali, B. Yameen, R. Neumann, et al., J. Amer. Chem. Soc. 130, 16351 (2008).

    Article  CAS  Google Scholar 

  38. F. Xia, W. Guo, Y. Mao, et al., J. Amer. Chem. Soc. 130, 8345 (2008).

    Article  CAS  Google Scholar 

  39. E. B. Kalman, O. Sudre, I. Vlassiouk, and Z. S. Siwy, Anal. Bioanal. Chem. 394, 413 (2009).

    Article  CAS  Google Scholar 

  40. M. Ali, P. Ramirez, S. Mafe, et al., ACS Nano 3, 603 (2009).

    Article  CAS  Google Scholar 

  41. W. Guo, H. Xia, F. Xia, et al., Chem. Phys. Chem. 11, 859 (2010).

    Article  CAS  Google Scholar 

  42. J. M. Perry, K. Zhou, Z. D. Harms, and S. C. Jacobson, ACS Nano 4, 3897 (2010).

    Article  CAS  Google Scholar 

  43. C. Wei and A. J. Bard, Anal. Chem. 69, 4627 (1997).

    Article  CAS  Google Scholar 

  44. E. Umehara, N. Pourmand, C. D. Webb, et al., Nano Lett. 6, 2486 (2006).

    Article  CAS  Google Scholar 

  45. K. Zhou, M. L. Kovarik, and S. C. Jacobson, J. Am. Chem. Soc. 130, 8614 (2008).

    Article  CAS  Google Scholar 

  46. P. Yu. Apel, I. V. Blonskaya, A. Yu. Didyk, et al., Nucl. Instrum. Meth. Phys. Res. B 179, 55 (2001).

    Article  CAS  Google Scholar 

  47. P. Yu. Apel, I. V. Blonskaya, O. L. Orelovitch, et al., Nucl. Instrum. Meth. Phys. Res. B 209, 329 (2003).

    Article  CAS  Google Scholar 

  48. P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, et al., Radiat. Meas. 43, Suppl. 1, 552 (2008).

    Article  Google Scholar 

  49. T. D. Khokhlova and B. V. Mchedlishvili, Kolloid. Zh. 58, 846 (1996).

    Google Scholar 

  50. O. L. Orelovich and P. Yu. Apel’, Prib. Tekh. Eksp., No. 1, 133 (2001).

  51. A. Wehling, W. H. Pohl, B. Gerke, et al., Chem. Phys. Chem. 9, 327 (2008).

    Article  CAS  Google Scholar 

  52. P. Yu. Apel, A. Schulz, R. Spohr, et al., Nucl. Instrum. Meth. Phys. Res. B 130, 55 (1997).

    Article  Google Scholar 

  53. S. Tretyakova, P. Apel, L. Jolos, et al., in Solid State Nuclear Track Detectors (Pergamon, Oxford, 1980), p. 283.

    Google Scholar 

  54. P. Ramirez, V. Gomez, J. Cervera, et al., J. Chem. Phys. 126, 194703 (2007).

    Article  Google Scholar 

  55. P. Yu. Apel and L. I. Kravets, Khim. Vys. Energii 25, 138 (1991).

    CAS  Google Scholar 

  56. V. V. Berezkin, O. A. Kiseleva, A. N. Nechaev, et al., Kolloid. Zh. 56, 319 (1994).

    CAS  Google Scholar 

  57. P. Yu. Apel and G. Pretzsch, Nucl. Tracks Radiat. Meas. 11, 45 (1986).

    Article  CAS  Google Scholar 

  58. C. Geissman and M. Ulbricht, Macromol. Chem. Phys. 206, 268 (2005).

    Article  Google Scholar 

  59. J. Cervera, A. Alcaraz, B. Schiedt, et al., J. Phys. Chem. C 111, 12265 (2007).

    Article  CAS  Google Scholar 

  60. P. Dejardin, E. N. Vasina, V. V. Berezkin, et al., Langmuir 21, 4680 (2005).

    Article  CAS  Google Scholar 

  61. J. Xue, Y. Xie, Y. Yan, et al., Biomicrofluidics 3, 022408 (2009).

    Article  Google Scholar 

  62. P. Yu. Apel, R. Spohr, C. Trautmann, and V. Vutsadakis, Radiat. Meas. 31, 51 (1999).

    Article  CAS  Google Scholar 

  63. P. Apel and D. Fink, in Transport Processes in Ion-Irradiated Polymers (Springer, Berlin, 2004), p. 147.

    Google Scholar 

  64. P. Yu. Apel and S. N. Dmitriev, Membrany, No. 3, 32 (2004).

  65. P. Yu. Apel, V. V. Berezkin, A. B. Vasil’ev, et al., Membrany, No. 3, 45 (2006).

  66. A. N. Nechaev, P. Yu. Apel’, A. N. Cherkasov, et al., Membrany, No. 4, 18 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Apel.

Additional information

Original Russian Text © P.Yu. Apel, I.V. Blonskaya, N.V. Levkovich, O.L. Orelovich, 2011, published in Membrany i membrannye tekhnologii, 2011, Vol. 1, No. 2, pp. 111–125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apel, P.Y., Blonskaya, I.V., Levkovich, N.V. et al. Asymmetric track membranes: Relationship between nanopore geometry and ionic conductivity. Pet. Chem. 51, 555–567 (2011). https://doi.org/10.1134/S0965544111070024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544111070024

Keywords

Navigation