Skip to main content
Log in

Multiplicative Control Problem for a Nonlinear Reaction–Diffusion Model

  • OPTIMAL CONTROL
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper studies a multiplicative control problem for the reaction–diffusion equation in which the reaction coefficient nonlinearly depends on the substance concentration, as well as on spatial variables. The role of multiplicative controls is played by the coefficients of diffusion and mass transfer. The solvability of the extremum problem is proved, and optimality systems are derived for a specific reaction coefficient. Based on the analysis of these systems, the relay property of multiplicative and distributed controls is established, and estimates of the local stability of optimal solutions to small perturbations of both the quality functionals and one of the given functions of the boundary value problem are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. K. Ito and K. Kunish, “Estimation of the convection coefficient in elliptic equations,” Inverse Probl. 14, 995–1013 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  2. G. V. Alekseev and D. A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid,” J. Inv. Ill-Posed Probl. 9, 521–562 (1998).

    Article  Google Scholar 

  3. P. A. Nguyen and J.-P. Raymond, “Control problems for convection–diffusion equations with control localized on manifolds,” ESAIM: Control Optim. Calc. Var. 6, 467–488 (2001).

    MathSciNet  Google Scholar 

  4. G. V. Alekseev, I. S. Vakhitov, and O. V. Soboleva, “Stability estimates in identification problems for the convection–diffusion–reaction equation,” Comput. Math. Math. Phys. 52 (12), 1635–1649 (2012).

    Article  MathSciNet  Google Scholar 

  5. P. A. Nguyen and J.-P. Raymond, “Pointwise control of the Boussinesq system,” Syst. Control Lett. 60 (4), 249–255 (2011).

    Article  MathSciNet  Google Scholar 

  6. A. I. Korotkii and D. A. Kovtunov, “Optimal control of thermal convection,” Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 16 (5), 103–112 (2010).

    Google Scholar 

  7. A. I. Korotkii and A. L. Litvinenko, “Solvability of a mixed boundary value problem for a stationary reaction–convection–diffusion model,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 24 (1), 106–120 (2018).

    Google Scholar 

  8. R. V. Brizitskii and Zh. Yu. Saritskaya, “Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition,” Comput. Math. Math. Phys. 56 (12), 2011–2022 (2016).

    Article  MathSciNet  Google Scholar 

  9. R. V. Brizitskii and Zh. Yu. Saritskaya, “Stability of solutions of control problems for the convection–diffusion–reaction equation with a strong nonlinearity,” Differ. Equations 53 (4), 485–496 (2017).

    Article  MathSciNet  Google Scholar 

  10. R. V. Brizitskii and Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection–diffusion–reaction equation,” J. Inverse Ill-Posed Probl. 26 (6), 821–833 (2018).

    Article  MathSciNet  Google Scholar 

  11. R. V. Brizitskii and Zh. Yu. Saritskaya, “Inverse coefficient problems for a nonlinear convection–diffusion–reaction equation,” Izv. Math. 82 (1), 14–39 (2018).

    Article  MathSciNet  Google Scholar 

  12. R. V. Brizitskii and Zh. Yu. Saritskaya, “Boundary control problem for a nonlinear convection–diffusion–reaction equation,” Comput. Math. Math. Phys. 58 (12), 2053–2063 (2018).

    Article  MathSciNet  Google Scholar 

  13. G. V. Alekseev and R. V. Brizitskii, “Analysis of the boundary value and control problems for nonlinear reaction–diffusion–convection equation,” J. Sib. Fed. Univ. Math. Phys. 14 (4), 452–462 (2021).

    Article  MathSciNet  Google Scholar 

  14. R. V. Brizitskii, V. S. Bystrova, and Zh. Yu. Saritskaya, “Analysis of boundary value and extremum problems for a nonlinear reaction–diffusion–convection equation,” Differ. Equations 57 (5), 615–629 (2021).

    Article  MathSciNet  Google Scholar 

  15. A. Y. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, and K.-H. Hoffmann, “Diffusion approximation of the radiative–conductive heat transfer model with Fresnel matching conditions,” Commun. Nonlinear Sci. Numer. Simul. 57, 290–298 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Y. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, and K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange,” J. Math. Anal. Appl. 460 (2), 737–744 (2018).

    Article  MathSciNet  Google Scholar 

  17. A. Y. Chebotarev, A. E. Kovtanyuk, and N. D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type,” Commun. Nonlinear Sci. Numer. Simul. 75, 262–269 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects,” J. Math. Anal. Appl. 439, 678–689 (2016).

    Article  MathSciNet  Google Scholar 

  19. A. Yu. Chebotarev, “Optimal control problems for complex heat transfer equations with Fresnel matching conditions,” Comput. Math. Math. Phys. 62 (3), 372–381 (2022).

    Article  MathSciNet  Google Scholar 

  20. S. A. Lorca and J. L. Boldrini, “Stationary solutions for generalized Boussinesq models,” J. Differ. Equations 124, 389–406 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Belmiloudi, “Robin-type boundary control problems for the nonlinear Boussinesq type equations,” J. Math. Anal. Appl. 273, 428–456 (2002).

    Article  MathSciNet  Google Scholar 

  22. A. Bermudez, R. Munoz-Sola, and R. Vazquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating,” J. Math. Anal. Appl. 368, 444–468 (2010).

    Article  MathSciNet  Google Scholar 

  23. E. S. Baranovskii, “Feedback optimal control problem for a network model of viscous fluid flows,” Math. Notes 112 (1), 26–39 (2022).

    Article  MathSciNet  Google Scholar 

  24. E. S. Baranovskii, “The optimal start control problem for two-dimensional Boussinesq equations,” Izv. Math. 86 (2), 221–242 (2022).

    Article  MathSciNet  Google Scholar 

  25. E. S. Baranovskii, “Optimal boundary control of nonlinear-viscous fluid flows,” Sb. Math. 211 (4), 505–520 (2020).

    Article  MathSciNet  Google Scholar 

  26. R. V. Brizitskii and Zh. Yu. Saritskaia, “Multiplicative control problems for nonlinear reaction–diffusion–convection model,” J. Dyn. Contr. Sys. 27 (2), 379–402 (2021).

    Article  MathSciNet  Google Scholar 

  27. G. V. Alekseev and R. V. Brizitskii, “Theoretical analysis of boundary value problems for generalized Boussinesq model of mass transfer with variable coefficients,” Symmetry 12, 2580 (2022).

    Article  ADS  Google Scholar 

  28. M. Ruzicka, V. Shelukhin, and M. M. dos Santos, “Steady flows of Cosserat–Bingham fluids,” Math. Methods Appl. Sci. 40, 2746–2761 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. E. Mamontov and D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids,” J. Math. Fluid Mech. 21, 9 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. E. Mamontov and D. A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat-conducting fluids,” Izv. Math. 85 (4), 755–812 (2021).

    Article  MathSciNet  Google Scholar 

  31. A. E. Mamontov and D. A. Prokudin, “Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media,” Sib. Elektron. Mat. Izv. 19 (2), 959–971 (2022).

    MathSciNet  Google Scholar 

  32. T. H. Wolff, “A property of measure in R n and an application to unique continuation,” Geom. Funct. Anal. 2 (2), 225–284 (1992).

    Article  MathSciNet  Google Scholar 

  33. G. V. Alekseev, Optimization in Stationary Problems of Heat and Mass Transfer and Magnetohydrodynamics (Nauchnyi Mir, Moscow, 2010) [in Russian].

    Google Scholar 

  34. R. V. Brizitskii, N. N. Maksimova, and A. G. Maslovskaya, “Inverse problems for the diffusion–drift model of charging of an inhomogeneous polar dielectric,” Comput. Math. Math. Phys. 63 (9), 1684–1698 (2023).

    Article  MathSciNet  Google Scholar 

  35. A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications (Nauchnaya Kniga, Novosibirsk, 1999; Am. Math. Soc., Providence, R.I., 2000).

  36. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineires (Dunod, Paris, 1969).

    Google Scholar 

Download references

Funding

This work was carried out as part of the state task of the Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences (No. 075-01290-23-00) and was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 075-02-2023-946).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Brizitskii or A. A. Donchak.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizitskii, R.V., Donchak, A.A. Multiplicative Control Problem for a Nonlinear Reaction–Diffusion Model. Comput. Math. and Math. Phys. 64, 56–72 (2024). https://doi.org/10.1134/S0965542524010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542524010056

Keywords:

Navigation