Skip to main content
Log in

Data Parallelization Algorithms for the Direct Simulation Monte Carlo Method for Rarefied Gas Flows on the Basis of OpenMP Technology

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A data parallelization algorithm for the direct simulation Monte Carlo method for rarefied gas flows is considered. The scaling of performance of the main algorithm procedures are analyzed. Satisfactory performance scaling of the parallel particle indexing procedure is shown, and an algorithm for speeding up the operation of this procedure is proposed. Using examples of solving problems of free flow and flow around a cone for a 28-core node with shared memory, an acceptable speedup of the entire algorithm was obtained. The efficiency of the data parallelization algorithm and the computational domain decomposition algorithm for free flow is compared. Using the developed parallel code, a study of the supersonic rarefied flow around a cone is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. L. Boltzmann, “Weitere studien über das wärmegleichgewicht unter gasmolecülen,” Wien. Acad. Sitzungsber. No. 66, 275–370 (1872).

  2. E. A. Nagnibeda and E. V. Kustova, Kinetic Theory of Transport and Relaxation Processes in Flows of Nonequilibrium Reacting Gases (St. Petersburg Stat Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  3. O. I. Dodulad, Yu. Yu. Kloss, A. P. Potapov, F. G. Tcheremissine, and P. V. Shuvalov, “Simulation of rarefied gas flows on the basis of the Boltzmann kinetic equation solved by applying a conservative projection method,” Comput. Math. Math. Phys. 56 (6), 996–1011 (2016).

    Article  MathSciNet  Google Scholar 

  4. F. G. Tcheremissine, “Solution of the Boltzmann equation in the continuum flow regime,” Comput. Math. Math. Phys. 63 (2), 319–331 (2023).

    Article  MathSciNet  Google Scholar 

  5. P. L. Bhatnagar, E. P. Gross, and M. Krook, “Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511–524 (1954).

    Article  Google Scholar 

  6. E. M. Shakhov, “Generalization of the Krook kinetic relaxation equation,” Fluid Dynam. 3 (5), 95–96 (1968).

    Article  MathSciNet  Google Scholar 

  7. E. M. Shakhov, A Method for Investigating the Motion of Rarefied Gas (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  8. V. A. Titarev, “Application of the Nesvetay code for solving three-dimensional high-altitude aerodynamics problems,” Comput. Math. Math. Phys. 60 (4), 737–748 (2020).

    Article  MathSciNet  Google Scholar 

  9. V. A. Titarev and A. A. Morozov, “Arbitrary Lagrangian–Eulerian discrete velocity method with application to laser-induced plume expansion,” Appl. Math. Comput. VSI:Num Hyp. 429, 127241 (2022).

  10. M. Pfeiffer, A. Mirza, and P. Nizenkov, “Multi-species modeling in the particle-based ellipsoidal statistical Bhatnagar–Gross–Krook method for monatomic gas species,” Phys. Fluids 33, 036106 (2021).

  11. G. A. Bird, Molecular Gas Dynamics (Clarendon, Oxford, 1976; Mir, Moscow, 1981).

  12. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarenton, Oxford, 1994).

    Book  Google Scholar 

  13. G. A. Bird, The DSMC Method (CreateSpace Independent Publishing Platform, 2013).

  14. G. A. Bird, “Approach to translational equilibrium in a rigid sphere gas,” Phys. Fluids 6, 1518–1519 (1963).

    Article  Google Scholar 

  15. S. Dietrich and I. D. Boyd, “Scalar and parallel optimized implementation of the direct 126simulation Monte Carlo method,” J. Comput. Phys. 126 (2), 328–342 (1996).

    Article  Google Scholar 

  16. M. Ivanov, A. Kashkovsky, S. Gimelshein, G. Markelov, A. Alexeenko, Y. A. Bondar, G. Zhukova, S. Nikiforov, and P. Vaschenkov, “SMILE system for 2D/3D DSMC computations,” Proc. of the 25th Int. Symposium on Rarefied Gas Dynamics, St. Petersburg, 2006, pp. 21–28.

  17. N. Y. Bykov and Yu. E. Gorbachev, “Cluster formation in copper vapor jet expanding into vacuum: The direct simulation Monte Carlo,” Vacuum 163, 119–127 (2019).

    Article  Google Scholar 

  18. S. J. Plimpton, S. G. Moore, A. Borner, A. K. Stagg, T. P. Koehler, J. R. Torczynski, and M. A. Gallis, “Direct simulation Monte Carlo on petaflop supercomputers and beyond,” Phys. Fluids 31, 086101 (2019).

  19. T. Scanlon, C. White, M. K. Borg, P. R. Cassineli, E. Farbar, I. D. Boyd, J. Reese, and R. Brown, “Open source Direct Simulation Monte Carlo (DSMC) chemistry modelling for hypersonic flows,” AIAA J. 53 (6), 1670–1680 (2015).

    Article  Google Scholar 

  20. M. S. Ivanov and S. V. Rogazinskii, The Direct Simulation Monte Carlo Method in Rarefied Gas Dynamics (Vychisk. Tsentr Akad. Nauk SSSR, Moscow, 1988) [in Russian].

    Google Scholar 

  21. S. Stefanov, E. Roohi, and A. Shoja-Sani, “A novel transient-adaptive subcell algorithm with a hybrid application of different collision techniques in direct simulation Monte Carlo (DSMC),” Phys. Fluids 34, 092003 (2022).

  22. R. G. Wilmoth, “Application of a parallel Direct Simulation Monte Carlo method to hypersonic rarefied flows,” AIAA J. 30 (10), 2447–2452 (1992).

    Article  Google Scholar 

  23. M. Ivanov, G. Markelov, S. Taylor, and J. Watts, “Parallel DSMC strategies for 3D computations,” Proc. Parallel CFD'96 (North Holland, Amsterdam, 1997).

    Google Scholar 

  24. Kyun Ho Lee and Seok Weon Choi, “Interaction effect analysis of thruster plume on LEO satellite surface using parallel DSMC method,” Comput. & Fluids 80, 333–341 (2013).

    Article  Google Scholar 

  25. R. Jambunathan, D. A. Levin, “Advanced parallelization strategies using hybrid MPI-CUDA octree DSMC method for modeling flow through porous media,” Comput. Fluids 149, 70–87 (2017).

    Article  MathSciNet  Google Scholar 

  26. I. A. Grishin, V. V. Zakharov, and G. A. Luk’yanov, “Data parallelization of the direct simulation Monte Carlo method in molecular gas dynamics,” Preprint No. 3–98 (Institute of High-Performance Computations and Data Bases, St. Petersburg, 1998).

    Google Scholar 

  27. N. Yu. Bykov and G. A. Luk’yanov, “Parallel direct simulation Monte Carlo method for nonstationary flows of rarefied gas on supercomputers with massively parallel architecture,” Preprint No. 5–97 (Institute of High-Performance Computations and Data Bases, St. Petersburg, 1998).

    Google Scholar 

  28. N. Yu. Bykov, Yu. E. Gorbachev, and G. A. Lukianov, " Parallel direct simulation Monte Carlo of outflow into vacuum from a pulse source," Thermophys. Aeromech. 3 (3), 399–405 (1998).

    Google Scholar 

  29. M. Shamseddine and I. Lakkis, “A novel spatio-temporally adaptive parallel three-dimensional DSMC Solver for unsteady rarefied micro/nano gas flows,” Comput. Fluids 186, 1–14 (2019).

    Article  MathSciNet  Google Scholar 

  30. W. Wagner, “A Convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation,” J. Stat. Phys. 66 (3/4), 1011–1044 (1992).

    Article  MathSciNet  Google Scholar 

  31. D. Gao and T. E. Schwartzentruber, “Optimizations and Open MP implementation for the direct simulation Monte Carlo method,” Comput. Fluids 42, 73–81 (2011).

    Article  Google Scholar 

  32. F. W. Vogenitz and G. Y. Takata, “Rarefied hypersonic flow about cones and flat plates by Monte Carlo simulation,” AIAA J. 9 (1), 94–100 (1971).

    Article  Google Scholar 

  33. A. I. Erofeev, “Calculation of the flow of hypersonic rarefied gas around a cone at an angle of attack,” Uchen. Zap. TsAGI 10 (6), 122–127 (1979).

    Google Scholar 

  34. I. N. Larina and V/ A. Rykov, “Three-dimensional flow of a rarefied gas past a conical body,” USSR Comput. Math. Math. Phys. 29 (1), 77–82 (1989).

    Article  Google Scholar 

  35. J. C. Taylor, J. N. Moss, and H. A. Hassan, “Study of hypersonic flow past sharp cones,” AIAA Paper 1713 (1989).

  36. N. F. Krasnov, Aerodynamics of Solids of Revolution (Mashinostroenie, Moscow, 1964) [in Russian].

    Google Scholar 

  37. Z. Kopal, “Tables of supersonic flow around cones,” Technical report No. 1 Mass. Inst. of Technology, 1947.

  38. D. Tskhakaya and R. Schneider, “Optimization of PIC codes by improved memory management,” J. Comput. Phys. 225, 829–839 (2007).

    Article  Google Scholar 

  39. A. A. Romanenko abd A., V. Snytikov, “Optimization of reordering of simulated particles in the implementation of the method particles in cells on GPU,” Vestn. Novosib. Gos. Univ., Ser. Inform. Tekhnol. 17, 82–89 (2019).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-11-00078. The computing resources were provided by the Supercomputer Center “Polytechnic.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Bykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to Professor E.M. Shakhov on the occasion of his 90th birthday

Translated by A. Klimontovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, N.Y., Fyodorov, S.A. Data Parallelization Algorithms for the Direct Simulation Monte Carlo Method for Rarefied Gas Flows on the Basis of OpenMP Technology. Comput. Math. and Math. Phys. 63, 2275–2296 (2023). https://doi.org/10.1134/S0965542523120072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523120072

Keywords:

Navigation