Skip to main content
Log in

Controlling Chaos in 3D Porous Media in the Presence of Orientation Effect

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The influence of orientation on the control of chaotic behaviors of the system in a porous medium is studied in this article based on the theory of dynamical systems. A three-dimensional system model is obtained using the spectral method. The results showed that chaos can be suppressed in the case of a low or moderate Prandtl number by choosing appropriate tilt angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  MathSciNet  Google Scholar 

  2. B. Saltzman, “Finite amplitude free convection as an initial value problem I,” J. Atmos. Sci. 19, 329–341 (1962).

    Article  Google Scholar 

  3. P. Vadasz and S. Olek, “Transitions and chaos for free convection in a rotating porous layer,” Int. J. Heat Mass Transfer 41, 1417–1435 (1998).

    Article  Google Scholar 

  4. P. Vadasz and S. Olek, “Route to chaos for moderate Prandtl number convection in a porous layer heated from below,” Transport Porous Media 41, 211–239 (2000).

    Article  Google Scholar 

  5. P. Vadasz, “Local and global transitions to chaos and hysteresis in a porous layer heated from below,” Transport Porous Media 37, 213–245 (1999).

    Article  MathSciNet  Google Scholar 

  6. P. Vadasz, “Small and moderate Prandtl number convection in a porous layer heated from below,” Int. J. Energy Res. 27, 941–960 (2003).

    Article  Google Scholar 

  7. D. Roy and Z. E. Musielak, “Generalized Lorenz models and their routes to chaos: I. Energy-conserving vertical mode truncations,” Chaos Solitons Fractals 32, 1038–1052 (2007).

    Article  MathSciNet  Google Scholar 

  8. D. Roy and Z. E. Musielak, “Generalized Lorenz models and their routes to chaos: II. Energy-conserving horizontal mode truncations,” Chaos Solitons Fractals 31, 747–756 (2007).

    Article  MathSciNet  Google Scholar 

  9. B. W. Shen, “Nonlinear feedback in a five-dimensional Lorenz model,” J. Atmos. Sci. 71, 1701–1723 (2014).

    Article  Google Scholar 

  10. T. Reyes and B. W. Shen, “A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional Lorenz model,” Chaos Solitons Fractals 125, 1–12 (2019).

    Article  Google Scholar 

  11. S. Faghih-Naini and B. W. Shen, “Quasi-periodic orbits in the five-dimensional nondissipative Lorenz model: The role of the extended nonlinear feedback loop,” Int. J. Bifurcation Chaos 28, 1850072 (2018).

  12. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196 (1990).

    Article  MathSciNet  Google Scholar 

  13. J. Singer, Y. Wang, and H. H. Bau, “Controlling a chaotic system,” Phys. Rev. Lett. 66, 1123 (1991).

    Article  Google Scholar 

  14. Y. Wang, J. Singer, and H. H. Bau, “Controlling chaos in a thermal convection loop,” J. Fluid Mech. 237, 479–498 (1992).

    Article  MathSciNet  Google Scholar 

  15. P. K. Yuen and H. H. Bau, “Rendering a subcritical Hopf bifurcation supercritical,” J. Fluid Mech. 317, 91–109 (1996).

    Article  MathSciNet  Google Scholar 

  16. P. K. Yuen and H. H. Bau, “Controlling chaotic convection using neural nets-theory and experiments,” Neural Networks 11, 557–569 (1998).

    Article  Google Scholar 

  17. M. N. Mahmud and I. Hashim, “Small and moderate Vadasz number chaotic convection in porous media in the presence of non-Boussinesq effects and feedback control,” Phys. Lett. A 375, 2382–2393 (2011).

    Article  Google Scholar 

  18. Y. Joundy, H. Rouah, and A. Taik, “A quasi-periodic gravity modulation to suppress chaos in a Lorenz system,” Int. J. Dyn. Control 9, 475–493 (2021).

    Article  MathSciNet  Google Scholar 

  19. K. Allali, “Suppression of chaos in porous media convection under multifrequency gravitational modulation,” Adv. Math. Phys. 2018, 1764182 (2018).

  20. C. C. Fuh and P. C. Tung, “Controlling chaos using differential geometric method,” Phys. Rev. Lett. 75, 2952 (1995).

    Article  Google Scholar 

  21. R. Qi and R. Feng, “Controlling chaos using differential geometric method with delayed variables,” Proceedings of the 4th International Conference on Control and Automation (2003), pp. 266–270.

  22. K. Murali and M. Lakshmanan, “Controlling of chaos in the driven Chua’s circuit,” J. Circuits Syst. Comput. 3, 125–137 (1993).

    Article  Google Scholar 

  23. S. Rajasekar, K. Murali, and M. Lakshmanan, “Control of chaos by nonfeedback methods in a simple electronic circuit system and the FitzHugh–Nagumo equation,” Chaos Solitons Fractals 8, 1545–1558 (1997).

    Article  Google Scholar 

  24. H. N. Agiza, “Controlling chaos for the dynamical system of coupled dynamos,” Chaos Solitons Fractals 13, 341–352 (2002).

    Article  Google Scholar 

  25. M. Franz and M. Zhang, “Suppression and creation of chaos in a periodically forced Lorenz system,” Phys. Rev. E 52, 3558 (1995).

    Article  MathSciNet  Google Scholar 

  26. A. Babloyantz and A. Destexhe, “Low-dimensional chaos in an instance of epilepsy,” Proc. Natl. Acad. Sci. 83, 3513–3517 (1986).

    Article  Google Scholar 

  27. L. D. Iasemidis and J. C. Sackellares, “Chaos theory and epilepsy,” The Neuroscientist 2, 118–126 (1996).

    Article  Google Scholar 

  28. J. M. Smith and R. J. Cohen, “Simple finite-element model accounts for wide range of cardiac dysrhythmias,” Proc. Natl. Acad. Sci. 81, 233–237 (1984).

    Article  Google Scholar 

  29. A. Garfinkel, M. L. Spano, W. L. Ditto, and J. N. Weiss, “Controlling cardiac chaos,” Science 257, 1230–1235 (1992).

    Article  Google Scholar 

  30. K. Allali, Y. Joundy, A. Taik, and V. Volpert, “Dynamics of convective thermal explosion in porous media,” Int. J. Bifurcation Chaos 30, 2050081 (2020).

  31. P. Vadasz and S. Olek, “Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media,” Transport Porous Media 37, 69–91 (1999).

    Article  MathSciNet  Google Scholar 

  32. A. Beljadid, Y. Joundy, H. Rouah, and A. Taik, “Transition to chaos in five-dimensional porous-medium thermal-hydrodynamic model with low Prandtl number,” Int. J. Bifurcation Chaos 32, 2250021 (2022).

  33. E. Magyari, “The Vadasz–Olek model regarded as a system of coupled oscillators,” Transport Porous Media 85, 415–435 (2010).

    Article  MathSciNet  Google Scholar 

  34. C. Grebogi, E. Ott, and J. A. Yorke, “Crises, sudden changes in chaotic attractors, and transient chaos,” Physica D: Nonlinear Phenom. 7, 181–200 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rouah.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouah, H., Joundy, Y. & Taik, A. Controlling Chaos in 3D Porous Media in the Presence of Orientation Effect. Comput. Math. and Math. Phys. 63, 2192–2201 (2023). https://doi.org/10.1134/S0965542523110179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110179

Keywords:

Navigation