Skip to main content
Log in

Analysis of the Influence of Quantum Effects on Optical Characteristics of Plasmonic Nanoparticles Based on the Discrete Sources Method

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The discrete sources method is adapted to the study of surface quantum effects based on mesoscopic boundary conditions with Feibelman parameters. A comparative analysis of the influence of bulk nonlocal effects and surface effects on optical characteristics of gold and silver nanoparticles is carried out using the generalized nonlocal optical response model. It is established that allowance for the nonlocal effect in the noble metals always leads to a reduced amplitude of the surface plasmon resonance (SPR) and its blue shift, while the surface effect depends substantially on the geometry of the particles. To a large degree, the mesoscopic boundary conditions recover the SPR amplitude as compared with the bulk nonlocal effect. This difference is especially noticeable in the field enhancement factor on the surface of the particles. Additionally, substantial differences in the SPR behavior for gold and silver particles are found in the case of mesoscopic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).

    Article  Google Scholar 

  2. J. W. M. Chon and K. Iniewski, Nanoplasmonics: Advanced Device Applications (CRC, Boca Raton, FL, 2018).

    Book  Google Scholar 

  3. H. Shi, X. Zhu, S. Zhang, et al., “Plasmonic metal nanostructures with extremely small features: New effects, fabrication and applications,” Nanoscale Adv. 3, 4349 (2021).

    Article  Google Scholar 

  4. C. David and F. J. Garcìa de Abajo, “Surface plasmon dependence on the electron density profile at metal surfaces,” ACS Nano 8 (9), 9558 (2014).

    Article  Google Scholar 

  5. W. Zhu, R. Esteban, A. G. Borisov, et al., “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).

    Article  Google Scholar 

  6. C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford Univ. Press, Oxford, 2011).

    Book  Google Scholar 

  7. R. Sinha-Roy, P. Garcìa-Gonźlez, H.-C. Weissker, et al., “Classical and ab initio plasmonics meet at sub-nanometric noble metal rods,” ACS Photonics 4 (6), 1484 (2017).

    Article  Google Scholar 

  8. G. Toscano, J. Straubel, A. Kwiatkowski, et al., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6 (1), 7132 (2015).

    Article  Google Scholar 

  9. N. A. Mortensen, S. Raza, M. Wubs, et al., “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).

    Article  Google Scholar 

  10. M. Kupresak, X. Zheng, V. Gae, and V. V. Moshchalkov, “Appropriate nonlocal hydrodynamic models for the characterization of deep-nanometer scale plasmonic scatterers,” Adv. Theory Simul. 3, 1900172 (2019).

  11. P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci. 12, 287 (1982).

    Article  Google Scholar 

  12. H.-Y. Deng, “A theory of electrodynamic response for bounded metals: Surface capacitive effects,” Ann. Phys. 418, 168204 (2020).

  13. Y. Yang, D. Zhu, W. Yan, et al., “A general theoretical and experimental framework for nanoscale electromagnetism,” Nature (London) 576, 248 (2019).

    Article  Google Scholar 

  14. P. A. D. Gonçalves, T. Christensen, N. Rivera, et al., “Plasmon–emitter interactions at the nanoscale,” Nat. Commun. 11, 366 (2020).

    Article  Google Scholar 

  15. P. E. Stamatopoulou and C. Tserkezis, “Finite-size and quantum effects in plasmonics: Manifestations and theoretical modelling [invited],” Opt. Mater. Express 12 (5), 1869 (2022).

    Article  Google Scholar 

  16. N. A. Mortensen, “Mesoscopic electrodynamics at metal surfaces (review),” Nanophotonics 10 (10), 2563 (2021).

    Article  Google Scholar 

  17. F. Yang and K. Ding, “Transformation optics approach to mesoscopic plasmonics,” Phys. Rev. B 105, L121410 (2022).

  18. N. A. Mortensen, P. A. D. Gonçalves, F. A. Shuklin, et al., “Surface-response functions obtained from equilibrium electron-density profiles,” Nanophotonics 10 (14), 3647 (2021).

    Article  Google Scholar 

  19. Yu. A. Eremin and A. G. Sveshnikov, “Mathematical model taking into account nonlocal effects of plasmonic structures on the basis of the discrete source method,” Comput. Math. Math. Phys. 58 (4), 572 (2018).

    Article  MathSciNet  Google Scholar 

  20. Yu. A. Eremin and A. G. Sveshnikov, “Semi-classical models of quantum nanoplasmonics based on the discrete source method (review),” Comput. Math. Math. Phys. 61 (4), 564 (2021).

    Article  MathSciNet  Google Scholar 

  21. A. Doicu, Yu. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, San Diego, 2000).

    Google Scholar 

  22. Yu. A. Eremin and A. G. Sveshnikov, “Mathematical models in nanooptics and biophotonics problems based on the discrete sources method,” Comput. Math. Math. Phys. 47 (2), 262 (2007).

    Article  MathSciNet  Google Scholar 

  23. N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975; Mir, Moscow, 1977).

  24. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984).

    Google Scholar 

  25. Yu. A. Eremin and E. V. Zakharov, “Analytical representation of the integral scattering cross-section in the integrofunctional discrete source method,” Differ. Equations 58 (8), 1064 (2022).

    Article  MathSciNet  Google Scholar 

  26. M. K. Svendsen, C. Wolff, A.-P. Jauho, et al., “Role of diffusive surface scattering in nonlocal plasmonics,” J. Phys.: Condens. Matter 32, 395702 (2020).

  27. R. A. Echarri, P. A. D. Gonçalves, C. Tserkezis, et al., “Optical response of noble metal nanostructures: Quantum surface effects in crystallographic facets,” Optica 8 (5), 710 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation and within the program of the Moscow Center for Fundamental and Applied Mathematics (agreement no. 075-15-2022-284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Eremin or V. V. Lopushenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y.A., Lopushenko, V.V. Analysis of the Influence of Quantum Effects on Optical Characteristics of Plasmonic Nanoparticles Based on the Discrete Sources Method. Comput. Math. and Math. Phys. 63, 2139–2149 (2023). https://doi.org/10.1134/S0965542523110088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110088

Keywords:

Navigation