Skip to main content
Log in

Soft Computing Artificial Intelligence of Schrödinger Time Independent Equation Arises in Wheeler–DeWitt Model of Quantum Cosmology

  • INFORMATION SCIENCE
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Schrödinger time independent equation arises in Wheeler–DeWitt model of quantum cosmology to develop a wave function for the corrections of cosmologies. In this work, Schrödinger–Wheeler–DeWitt model is developed by using canonical transformation to transformed Hamiltonian equation. The exact solutions for flat universe (\(k = 0\)) model is presented and then soft computing technique through Levenberg–Marquardt backpropagation neural networks (LMB-NNs) is implemented. The data set of the flat universe model is generated for four different cases of separation constant \(B\) with step size \(0.1\) by Mathematica and imported into LMB-NNs for training, testing, and validation of the our proposed technique. The performance of LMB-NNs is provided by the validation of mean square error, error histogram, and regression analysis. The Statistical analysis; mean, minimum, maximum, and standard deviation, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. P. G. Huray, Maxwell’s Equations (Wiley, New York, 2011).

    Google Scholar 

  2. G. Weinstein, “Einstein’s 1916 derivation of the field equations” (2013). arXiv preprint arXiv:1310.6541

  3. S. Weinzierl, “Feynman integrals,” (2022). arXiv preprint arXiv:2201.03593

  4. A. Scott, Encyclopedia of Nonlinear Science (Routledge, New York, 2006).

    Book  Google Scholar 

  5. W. Pauli, “Relativistic field theories of elementary particles,” Rev. Mod. Phys. 13 (3), 203 (1941).

    Article  Google Scholar 

  6. W. C. Lane, “The wave equation and its solutions,” Project Physnet (Michigan State University, 2002).

    Google Scholar 

  7. R. L. Bates and J. A. Jackson, Glossary of Geology (American Geological Institute, Alexandria, Virginia, 1987).

    Google Scholar 

  8. R. A. Kycia, “Perturbed Lane–Emden equations as a boundary value problem with singular endpoints,” J. Dyn. Control Syst. 26 (2), 333–347 (2020).

    Article  MathSciNet  Google Scholar 

  9. D. A. McQuarrie, Mathematical Methods for Scientists and Engineers (Univ. Science Books, Sausalito, California, 2003).

    Google Scholar 

  10. M. Hazewinkel,"Lagrange equations (in mechanics)," Encyclopedia of Mathematics (Springer, 2001).

    Google Scholar 

  11. B. S. DeWitt, “Quantum theory of gravity: I. The canonical theory,” Phys. Rev. 160 (5), 1113 (1967).

    Article  Google Scholar 

  12. J. Wheeler, in Batelle Rencontres 1967 Lectures in Mathematics and Physics, Ed. by C. M. DeWitt and J. A. Wheeler (Benjamin, New York, 1968), pp. 242–307.

    Google Scholar 

  13. T. Vachaspati and A. Vilenkin, “Uniqueness of the tunneling wave function of the Universe,” Phys. Rev. D 37 (4), 898 (1988).

    Article  MathSciNet  Google Scholar 

  14. O. Bertolami and J. Mourao, “The ground-state wavefunction of a radiation-dominated Universe,” Classical Quantum Gravity 8 (7), 1271 (1991).

    Article  MathSciNet  Google Scholar 

  15. M. Cavaglia, V. de Alfarq, and A. T. Filippov, “A Schrödinger equation for miniuniverses,” Int. J. Mod. Phys. A 10 (05), 611–633 (1995).

    Article  Google Scholar 

  16. B. P. Zeigler, A. Muzy, and E. Kofman, Theory of Modeling and Simulation: Discrete Event and Iterative System Computational Foundations (Academic, New York, 2018).

    Google Scholar 

  17. S. A. Teukolsky, “Stability of the iterated Crank–Nicholson method in numerical relativity,” Phys. Rev. D 61 (8), 087501 (2000).

  18. W. H. Enright, D. J. Higham, B. Owren, and P. W. Sharp, “A survey of the explicit Runge–Kutta method” (1995). https://api.semanticscholar.org/CorpusID:16526161

  19. J. Martin and D. J. Schwarz, “WKB approximation for inflationary cosmological perturbations,” Phys. Rev. D 67 (8), 083512 (2003).

  20. W. A. Harrison, “Tunneling from an independent-particle point of view,” Phys. Rev. 123 (1), 85 (1961).

    Article  Google Scholar 

  21. G. A. Monerat, E. V. Correa Silva, G. Oliveira-Neto, L. G. Ferreira, and N. A. Lemos, “Notes on the quantization of FRW model in the presence of a cosmological constant and radiation,” Braz. J. Phys. 35, 1106–1109 (2005). https://doi.org/10.1590/S0103-97332005000700024

    Article  Google Scholar 

  22. M. Bouhmadi-Lopez and P. V. Moniz, “FRW quantum cosmology with a generalized Chaplygin gas,” Phys. Rev. D 71 (6), 063521 (2005).

  23. I. Moss and W. Wright, “Wave function of the inflationary Universe,” Phys. Rev. D 29 (6), 1067 (1984).

    Article  Google Scholar 

  24. M. J. Gotay and J. Demaret, “Quantum cosmological singularities,” Phys. Rev. D 28 (10), 2402 (1983).

    Article  MathSciNet  Google Scholar 

  25. G. Monerat, E. C. Silva, G. Oliveira-Neto, L. Ferreira Filho, and N. Lemos, “Quantization of Friedmann–Robertson–Walker spacetimes in the presence of a negative cosmological constant and radiation,” Phys. Rev. D 73 (4), 044022 (2006).

  26. A. Hosoya and K. Nakao,"(2+1)-dimensional pure gravity for an arbitrary closed initial surface," Classical Quantum Gravity 7, 163 (1990). https://doi.org/10.1088/0264-9381/7/2/010

    Article  MathSciNet  Google Scholar 

  27. Y. Fujiwara, S. Higuchi, A. Hosoya, T. Mishima, and M. Siino, “Nucleation of universe in (2+1)-dimensional gravity with negative cosmological constant,” Phys. Rev. D 44, 1756–1762 (1991). https://doi.org/10.1103/PhysRevD.44.1756

    Article  MathSciNet  Google Scholar 

  28. J. Louko and P. J. Ruback, “Spatially flat quantum cosmology,” Classical Quantum Gravity 8, 91–122 (1991). https://doi.org/10.1088/0264-9381/8/1/013

    Article  MathSciNet  Google Scholar 

  29. J. J. Halliwell and J. Louko, “Steepest descent contours in the path-integral approach to quantum cosmology: III. A general method with applications to anisotropic minisuperspace models,” Phys. Rev. D 42, 3997–4031 (1990). https://doi.org/10.1103/PhysRevD.42.3997

    Article  MathSciNet  Google Scholar 

  30. G. Oliveira-Neto, “No-boundary wave function of the anti-de Sitter space-time and the quantization of Λ,” Phys. Rev. D 58, 107501 (1998). https://doi.org/10.1103/PhysRevD.58.107501

  31. J. A. de Barros, E. C. Silva, G. Monerat, G. Oliveira-Neto, L. Ferreira Filho, and P. Romildo, Jr., “Tunneling probability for the birth of an asymptotically de Sitter universe,” Phys. Rev. D 75 (10), 104004 (2007).

  32. L. Jørgensen, D. L. Cardozo, and E. Thibierge, “Numerical resolution of the Schrödinger equation,” École Normale Supérieure de Lyon (2011).

    Google Scholar 

  33. H. Ochiai and K. Sato, “Numerical analysis of the wave function of the multidimensional universe,” Progr. Theor. Phys. 104 (2), 483–488 (2000).

    Article  Google Scholar 

  34. B. Vakili, “Scalar field quantum cosmology: A Schrödinger picture,” Phys. Lett. B 718 (1), 34–42 (2012).

    Article  Google Scholar 

  35. R. Bhatia and R. Mittal, “Numerical study of Schrödinger equation using differential quadrature method,” Int. J. Appl. Comput. Math. 4 (1), 1–21 (2018).

    Article  MathSciNet  Google Scholar 

  36. L. Banjai and M. López-Fernández, “Numerical approximation of the Schrödinger equation with concentrated potential,” J. Comput. Phys. 405, 109155 (2020).

  37. T. Ghafouri, Z. G. Bafghi, N. Nouri, and N. Manavizadeh, “Numerical solution of the Schrödinger equation in nanoscale side-contacted FED applying the finite-difference method,” Results Phys. 19, 103502 (2020).

  38. A. Khan, M. Ahsan, E. Bonyah, R. Jan, M. Nisar, A.-H. Abdel-Aty, and I. S. Yahia, “Numerical solution of Schrödinger equation by Crank–Nicolson method,” Math. Probl. Eng. 2022, 6991067 (2022).

  39. L. Viklund, L. Augustsson, and J. Melander, “Numerical approaches to solving the time-dependent Schrödinger equation with different potentials” (Uppsala Univ., 2016).

  40. N. Lambert, “Numerical solutions of Schrödinger's equation, TB2" (2001). https://www1.itp.tu-berlin.de/brandes/public_html/qm/qv3.pdf

  41. M. Rieth, W. Schommers, and S. Baskoutas,"Exact numerical solution of Schrödinger's equation for a particle in an interaction potential of general shape," Int. J. Mod. Phys. B 16 (27), 4081–4092 (2002).

    Article  Google Scholar 

  42. V. M. M. Abadi, A. H. Ranjbar, J. Mohammadi, and R. K. Kharame, “Numerical solution of the Schrödinger equation for types of Woods–Saxon potential” (2019). arXiv preprint arXiv:1910.03808

  43. I. Ahmad, S. Ahmad, M. Awais, S. Ul Islam Ahmad, and M. A. Z. Raja, “Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics,” Eur. Phys. J. Plus 133 (5), 1–15 (2018).

    Article  Google Scholar 

  44. A. Hassan, M. Kamran, A. Illahi, R. M. A. Zahoor, et al. “Design of cascade artificial neural networks optimized with the memetic computing paradigm for solving the nonlinear Bratu system,” Eur. Phys. J. Plus 134 (3), 122 (2019).

    Article  Google Scholar 

  45. Z. Masood, K. Majeed, R. Samar, and M. A. Z. Raja, “Design of Mexican hat wavelet neural networks for solving Bratu type nonlinear systems,” Neurocomputing 221, 1–14 (2017).

    Article  Google Scholar 

  46. I. Ahmad, H. Ilyas, A. Urooj, M. S. Aslam, M. Shoaib, and M. A. Z. Raja, “Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels,” Neural Comput. Appl. 31 (12), 9041–9059 (2019).

    Article  Google Scholar 

  47. J. A. Khan, M. A. Z. Raja, M. I. Syam, S. A. K. Tanoli, and S. E. Awan, “Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems,” Neural Comput. Appl. 26 (7), 1763–1780 (2015).

    Article  Google Scholar 

  48. M. A. Z. Raja, M. A. Manzar, F. H. Shah, and F. H. Shah, “Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models,” Appl. Soft Comput. 62, 359–372 (2018).

    Article  Google Scholar 

  49. A. Mehmood, A. Zameer, S. H. Ling, M. A. Z. Raja, et al., “Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow,” J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018).

    Article  Google Scholar 

  50. A. Ara, N. A. Khan, F. Naz, M. A. Z. Raja, and Q. Rubbab, “Numerical simulation for Jeffery–Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm,” AIP Adv. 8 (1), 015201 (2018).

  51. M. A. Z. Raja, F. H. Shah, A. A. Khan, and N. A. Khan, “Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson–Segalman fluid on vertical cylinder for drainage problems,” J. Taiwan Inst. Chem. Eng. 60, 59–75 (2016).

    Article  Google Scholar 

  52. M. A. Z. Raja, J. A. Khan, and T. Haroon, “Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks,” J. Taiwan Inst. Chem. Eng. 48, 26–39 (2015).

    Article  Google Scholar 

  53. M. Ammara, Z. Aneela, L. S. Ho, A. ur Rehman, and R. M. A. Zahoor, “Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming,” Neural Comput. Appl. 32 (14), 10337–10357 (2020).

    Article  Google Scholar 

  54. A. Mehmood, A. Zameer, M. S. Aslam, and M. A. Z. Raja, “Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits,” Neural Comput. Appl. 32 (11), 7121–7137 (2020).

    Article  Google Scholar 

  55. Z. Sabir, H. A. Wahab, M. Umar, M. G. Sakar, and M. A. Z. Raja, “Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation,” Math. Comput. Simul. 172, 1–14 (2020).

    Article  MathSciNet  Google Scholar 

  56. M. A. Z. Raja, U. Farooq, N. I. Chaudhary, and A. M. Wazwaz, “Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes,” Appl. Soft Comput. 38, 561–586 (2016).

    Article  Google Scholar 

  57. M. A. Z. Raja, R. Samar, M. A. Manzar, and S. M. Shah, “Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation,” Math. Comput. Simul. 132, 139–158 (2017).

    Article  MathSciNet  Google Scholar 

  58. M. Umar, Z. Sabir, F. Amin, J. L. Guirao, and M. A. Z. Raja, “Stochastic numerical technique for solving HIV infection model of CD4 + T cells,” Eur. Phys. J. Plus 135 (5), 1–19 (2020).

    Article  Google Scholar 

  59. A. Zameer, M. Majeed, S. M. Mirza, M. A. Z. Raja, A. Khan, and N. M. Mirza, “Bioinspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures,” Soft Comput. 23 (10), 3449–3463 (2019).

    Article  Google Scholar 

  60. S. Naz, M. A. Z. Raja, A. Mehmood, A. Zameer, and M. Shoaib, “Neuro-intelligent networks for Bouc–Wen hysteresis model for piezostage actuator,” Eur. Phys. J. Plus 136 (4), 1–20 (2021).

    Article  Google Scholar 

  61. J.-M. Castellanos-Jaramillo, A. Castellanos-Moreno, and A. Corella-Madueño, “A finite Hopfield neural network model for the oxygenation of hemoglobin,” Phys. Scr. 95 (7), 075002 (2020).

  62. A. Mehmood, N. I. Chaudhary, A. Zameer, and M. A. Z. Raja, “Novel computing paradigms for parameter estimation in Hammerstein controlled auto regressive moving average systems,” Appl. Soft Comput. 80, 263–284 (2019).

    Article  Google Scholar 

  63. R. Bouc, “Forced vibrations of mechanical systems with hysteresis,” in Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague, 1967 (1967).

  64. S. Lodhi, M. A. Manzar, and M. A. Z. Raja, “Fractional neural network models for nonlinear Riccati systems,” Neural Comput. Appl. 31 (1), 359–378 (2019).

    Article  Google Scholar 

  65. M. A. Z. Raja, M. A. Manzar, and R. Samar, “An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP,” Appl. Math. Model. 39 (10–11), 3075–3093 (2015).

    Article  MathSciNet  Google Scholar 

  66. A. Ara, N. A. Khan, O. A. Razzaq, T. Hameed, and M. A. Z. Raja, “Wavelets optimization method for evaluation of fractional partial differential equations: An application to financial modelling,” Adv. Differ. Equations 2018 (1), 1–13 (2018).

    Article  MathSciNet  Google Scholar 

  67. A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, and P. Kumam, “Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting,” IEEE Access 8, 71326–71338 (2020).

    Article  Google Scholar 

  68. Z.-u.-R. Chouhdry, K. M. Hasan, and M. A. Z. Raja, “Design of reduced search space strategy based on integration of Nelder–Mead method and pattern search algorithm with application to economic load dispatch problem,” Neural Comput. Appl. 30 (12), 3693–3705 (2018).

    Article  Google Scholar 

  69. A. S. Qureshi, A. Khan, A. Zameer, and A. Usman, “Wind power prediction using deep neural network based meta regression and transfer learning,” Appl. Soft Comput. 58, 742–755 (2017).

    Article  Google Scholar 

  70. A. Zameer, J. Arshad, A. Khan, and M. A. Z. Raja, “Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks,” Energy Conversion Manage. 134, 361–372 (2017).

    Article  Google Scholar 

  71. F. Faisal, M. Shoaib, M. A. Z. Raja, et al., “A new heuristic computational solver for nonlinear singular Thomas–Fermi system using evolutionary optimized cubic splines,” Eur. Phys. J. Plus 135 (1), 55 (2020).

    Article  Google Scholar 

  72. Z. Sabir, M. A. Manzar, M. A. Z. Raja, M. Sheraz, and A. M. Wazwaz, “Neuro-heuristics for nonlinear singular Thomas–Fermi systems,” Appl. Soft Comput. 65, 152–169 (2018).

    Article  Google Scholar 

  73. M. A. Z. Raja, “Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP,” Connect. Sci. 26 (3), 195–214 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Najam Ul Basat or Mahmoona Asghar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basat, N.U., Asghar, M. Soft Computing Artificial Intelligence of Schrödinger Time Independent Equation Arises in Wheeler–DeWitt Model of Quantum Cosmology. Comput. Math. and Math. Phys. 63, 2212–2226 (2023). https://doi.org/10.1134/S0965542523110040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110040

Keywords:

Navigation