Skip to main content
Log in

Alternative Direction Implicit Method for Solving First Order 2D Hyperbolic Delay Differential Equations

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

This article considers delayed two-dimensional first order hyperbolic differential equations. The propagation of the discontinuity of the solution is also established. An alternating implicit finite difference method and backward Euler finite difference methods are presented. We proved that this method is first-order convergent. Illustrating numerical examples are given for validation. We also present an application of the proposed approach to the variable delay problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic, New York, 1993).

    MATH  Google Scholar 

  2. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer-Verlag, New York, 1993).

    Book  MATH  Google Scholar 

  3. J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed. (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  4. M. C. Mackey and L. Glass, “Oscillations and chaos in physiological control systems,” Science 197, 287–289 (1977).

    Article  MATH  Google Scholar 

  5. B. Perthame Transport Equations in Biology (Birkhäuser, Basel, 2007).

    Book  MATH  Google Scholar 

  6. A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations (Oxford Univ. Press, Oxford, 2003).

    Book  MATH  Google Scholar 

  7. R. B. Stein, “A theoretical analysis of neuronal variability,” Biophys. J. 5 (2), 173–194 (1965).

    Article  Google Scholar 

  8. R. B. Stein, “Some models of neuronal variability,” Biophys. J. 7 (1), 37–68 (1967).

    Article  Google Scholar 

  9. K. K. Sharma and P. Singh, “Hyperbolic partial differential-difference equation in the mathematical modelling of neuronal firing and its numerical solution,” Appl. Math. Comput. 201, 229–238 (2008).

    MATH  MathSciNet  Google Scholar 

  10. P. Singh and K. K. Sharma, “Numerical solution of first-order hyperbolic partial differential-difference equation with shift,” Numer Methods Partial Differ. Equations 26 (1), 107–116 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Singh and K. K. Sharma, “Finite difference approximations for the first-order hyperbolic partial differential equation with point-wise delay,” Int. J. Pure Appl. Math. 67 (1), 49–67 (2011).

    MATH  MathSciNet  Google Scholar 

  12. P. Singh and K. K. Sharma, “Numerical approximations to the transport equation arising in neuronal variability,” Int. J. Pure Appl. Math. 69 (3), 341–356 (2011).

    MATH  MathSciNet  Google Scholar 

  13. S. Karthick and V. Subburayan, “Finite difference methods with interpolation for first-order hyperbolic delay differential equations,” in Differential Equations and Applications (Springer, Berlin, 2021), pp. 147–161.

    MATH  Google Scholar 

  14. S. Karthick, V. Subburayan, and R. P. Agarwal, “Stable difference schemes with interpolation for delayed one-dimensional transport equation,” Symmetry 14 (5), 1–18 (2022).

    Google Scholar 

  15. S. Karthick and V. Subburayan, “Finite difference methods with linear interpolation for solving a coupled system of hyperbolic delay differential equations,” Int. J. Math. Model. Numer. Optim. 12 (4), 370–389 (2022). https://doi.org/10.1504/IJMMNO.2022.10047235

    Article  Google Scholar 

  16. D. Peaceman and H. Rachford, “The numerical solution of parabolic and elliptic equations,” J. Soc. Ind. Appl. Math. 3, 28–41 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Douglas and J. E. Gunn, “A general formulation of alternating direction method. Part I: Parabolic and hyperbolic problems,” Numer. Math. 6, 428–453 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Karaa, “A high-order compact ADI method for solving three-dimensional unsteady convection-diffusion problems,” Numer. Methods Partial Differ. Equations 22, 983–993 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Karaa, “Unconditionally stable ADI scheme of higher-order for linear hyperbolic equations,” Int. J. Comput. Math. 87, 3030–3038 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  20. Q. Zhang, C. Zhang, and D. Deng, “Compact alternating direction implicit method to solve two-dimensional nonlinear delay hyperbolic differential equations,” Int. J. Comput. Math. 91 (5), 964–982 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Clavero, J. C. Jorge, and F. Lisbona, “A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems,” J. Comput. Appl. Math. 154 (2), 415–429 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Clavero, J. C. Jorge, F. Lisbona, and G. I. Shishkin, “An alternating direction scheme on a nonuniform mesh for reaction–diffusion parabolic problems,” IMA J. Numer. Anal. 20 (2), 263–280 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Subburayan and S. Natesan, “Parameter uniform numerical method for singularly perturbed 2D parabolic PDE with shift in space,” Mathematics 10 (18), 3310 (2022).

    Article  Google Scholar 

  24. A. Majumdar and S. Natesan, “Alternating direction numerical scheme for singularly perturbed 2D degenerate parabolic convection-diffusion problems,” Appl. Math. Comput. 313, 453–473 (2017).

    MATH  MathSciNet  Google Scholar 

  25. D. W. Deng and C. J. Zhang, “Application of a fourth-order compact ADI method to solve a two-dimensional linear hyperbolic equation,” Int. J. Comput. Math. 90 (2), 273–291 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  26. H. F. Ding and Y. X. Zhang, “A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation,” J. Comput. Appl. Math. 230, 626–632 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  27. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers (Chapman and Hall, London, 2000).

    Book  MATH  Google Scholar 

  28. J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, “Fitted numerical methods for singular perturbation problems,” Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (World Scientific, Singapore, 2012).

    MATH  Google Scholar 

  29. J. J. H. Miller, E. O’Riordan, G. I. Shishkin, and L. P. Shishkina, “Fitted mesh methods for problems with parabolic boundary layers,” Math. Proc. R. Ir. Acad. 98, 173–190 (1998).

    MATH  MathSciNet  Google Scholar 

  30. M. J. Ng-Stynes, E. O’Riordan, and M. Stynes, “Numerical methods for time-dependent convection–diffusion equations,” J. Comput. Appl. Math. 21, 289–310 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Fridman and Y. Orlov, “Exponential stability of linear distributed parameter systems with time-varying delays,” Automatica 45, 194–201 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. N. Al-Mutib, “Stability properties of numerical methods for solving delay differential equations,” J. Comput. Appl. Math. 10 (1), 71–79 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Wu, Theory and Applications of Partial Functional Differential Equations (Springer-Verlag, New York, 1996).

    Book  MATH  Google Scholar 

  34. E. Süli and D. F. Mayers, An Introduction to Numerical Analysis (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  35. G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (Oxford Univ. Press, Oxford, 1985).

    Google Scholar 

  36. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations (SIAM, Philadelphia, 2004).

    MATH  Google Scholar 

  37. K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  38. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Springer Science and Business Media, New York, 2012).

    MATH  Google Scholar 

  39. D. D. Bainov, Z. Kamont, and E. Minchev, “Comparison principles for impulsive hyperbolic equations of first order,” J. Comput. Appl. Math. 60 (3), 379–388 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  40. X. D. Liu, “A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws,” SIAM J. Numer. Anal. 30 (3), 701–716 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  41. J. M. Varah, “A lower bound for the smallest singular value of a matrix,” Linear Algebra Appl. 11 (1), 3–5 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  42. R. P. Agarwal and Y. M. Chow, “Finite-difference methods for boundary-value problems of differential equations with deviating arguments,” Comput. Methods Appl. Math. 12 (11), 1143–1153 (1986).

    MATH  MathSciNet  Google Scholar 

  43. R. K. Jain and R. P. Agarwal, “Finite difference method for second order functional differential equations,” J. Math. Phys. Sci. 7 (3), 301–316 (1973).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Karthick or V. Subburayan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthick, S., Subburayan, V. Alternative Direction Implicit Method for Solving First Order 2D Hyperbolic Delay Differential Equations. Comput. Math. and Math. Phys. 63, 779–793 (2023). https://doi.org/10.1134/S096554252305010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252305010X

Keywords:

Navigation