Skip to main content
Log in

Formulas for Computing the Lauricella Function in the Case of Crowding of Variables

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For the Lauricella function \(F_{D}^{{(N)}}\), which is a hypergeometric function of several complex variables \({{z}_{1}}, \ldots ,{{z}_{N}}\), analytic continuation formulas are constructed that correspond to the intersection of an arbitrary number of singular hyperplanes of the form \(\{ {{z}_{j}} = {{z}_{l}}\} \), \(j,l = \overline {1,N} \), \(j \ne l.\) These formulas give an expression for the considered function in the form of linear combinations of Horn hypergeometric series in \(N\) variables satisfying the same system of partial differential equations as the original series defining \(F_{D}^{{(N)}}\) in the unit polydisk. By applying these formulas, the function \(F_{D}^{{(N)}}\) and Euler-type integrals expressed in terms of \(F_{D}^{{(N)}}\) can be efficiently computed (with the help of exponentially convergent series) in the entire complex space \({{\mathbb{C}}^{N}}\) in the complicated cases when the variables form one or several groups of “very close” quantities. This situation is referred to as crowding, with the term taken from works concerned with conformal maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Exton, Multiple Hypergeometric Functions and Application (Wiley, New York, 1976).

    MATH  Google Scholar 

  2. I. M. Gel’fand, M. I. Graev, and V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type,” Russ. Math. Surv. 47 (4), 1–88 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Iwasaki, H. Kimura, Sh. Shimomura, and M. Yoshida, From Gauss to Painlevé: A Modern Theory of Special Functions (Friedrich Vieweg & Sohn, Braunschweig, 1991).

    Book  MATH  Google Scholar 

  4. K. Aomoto and M. Kita, Theory of Hypergeometric Functions (Springer, Tokyo, 2011).

    Book  MATH  Google Scholar 

  5. N. Akerblom and M. Flohr, “Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas point,” J. High Energy Phys. 2 (057), 24 (2005).

    MathSciNet  Google Scholar 

  6. R.-P. Holzapfel, A. M. Uludag, and M. Yoshida, Arithmetic and Geometry around Hypergeometric Functions (Birkhäuser, Basel, 2007).

    Book  MATH  Google Scholar 

  7. O. V. Tarasov, “Using functional equations to calculate Feynman integrals,” Theor. Math. Phys. 200, 1205–1221 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. I. Bezrodnykh, “The Lauricella hypergeometric function \(F_{D}^{{(N)}}\), the Riemann–Hilbert problem, and some applications,” Russ. Math. Surv. 73 (6), 941–1031 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu. A. Brychkov and N. V. Savischenko, “Application of hypergeometric functions of two variables in wireless communication theory,” Lobachevskii J. Math. 40 (7), 938–953 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bergé, R. Massey, Q. Baghi, and P. Touboul, “Exponential shapelets: Basis functions for data analysis of isolated feature,” Mon. Not. R. Astron. Soc. 486 (1), 544–559 (2019).

    Article  Google Scholar 

  11. S. I. Bezrodnykh and V. I. Vlasov, “Asymptotics of the Riemann–Hilbert problem for the Somov model of magnetic reconnection of long shock waves,” Math. Notes 110 (6), 853–871 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. I. Vlasov and S. L. Skorokhodov, “Analytical solution for the cavitating flow over a wedge II,” Comput. Math. Math. Phys. 61 (11), 1834–1854 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili,” Rend. Circ. Math. Palermo 7, 111–158 (1893).

    Article  MATH  Google Scholar 

  14. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  15. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1996), Vol. 2.

    Book  MATH  Google Scholar 

  16. S. I. Bezrodnykh, “Analytic continuation of the Lauricella function \(F_{D}^{{(N)}}\) with arbitrary number of variables,” Integral Transforms Spec. Funct. 29 (1), 21–42 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. I. Bezrodnykh, “Analytic continuation of Lauricella’s function \(F_{D}^{{(N)}}\) for large in modulo variables near hyperplanes \(\{ {{z}_{j}} = {{z}_{l}}\} \),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2021.1929206

  18. S. I. Bezrodnykh, “Analytic continuation of Lauricella’s function \(F_{D}^{{(N)}}\) for variables close to unit near hyperplanes \(\{ {{z}_{j}} = {{z}_{l}}\} \),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2021.1939329

  19. P. Henrici, Applied and Computational Complex Analysis (Wiley, New York, 1991), Vols. 1–3.

    MATH  Google Scholar 

  20. L. N. Trefethen, “Numerical construction of conformal maps,” Appendix to E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering (Prentice Hall, New York, 1993).

    Google Scholar 

  21. P. K. Kythe, Computational Conformal Mapping (Birkhäuser, Basel, 1998).

    Book  MATH  Google Scholar 

  22. V. I. Vlasov and S. L. Skorokhodov, “Multipole method for the Dirichlet Problem on doubly connected domains of complex geometry: A general description of the method,” Comput. Math. Math. Phys. 40 (11), 1567–1581 (2000).

    MathSciNet  MATH  Google Scholar 

  23. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for the model of magnetic reconnection in plasma,” Comput. Math. Math. Phys. 42 (3), 263–298 (2002).

    MathSciNet  MATH  Google Scholar 

  24. L. N. Trefethen and T. A. Driscoll, Schwarz–Christoffel Transformation (Cambridge Univ. Press, Cambridge, 2005).

    MATH  Google Scholar 

  25. L. Banjai, “Revisiting the crowding phenomenon in Schwarz–Christoffel mapping,” SIAM J. Sci. Comput. 30 (2), 618–636 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Papamichael and N. Stylianopoulos, Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals (World Scientific, Hackensack, NJ, 2010).

    Book  MATH  Google Scholar 

  27. T. M. Sadykov and A. K. Tsikh, Hypergeometric and Algebraic Functions of Several Variables (Nauka, Moscow, 2014) [in Russian].

    MATH  Google Scholar 

  28. S. I. Bezrodnykh, “Analytic continuation of the Horn hypergeometric series with an arbitrary number of variables,” Integral Transforms Spec. Funct. 31 (10), 788–803 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Fox, “The asymptotic expansion of hypergeometric functions,” Proc. London Math. Soc. 27 (2), 389–400 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. M. Wright, “The asymptotic expansion of hypergeometric functions,” Proc. London Math. Soc. 10 (4), 286–293 (1935).

    Article  MATH  Google Scholar 

  31. S. I. Bezrodnykh, “Analytic continuation of the Kampé de Fériet function and the general double Horn series,” Integral Transforms Spec. Funct. (2022). https://doi.org/10.1080/10652469.2022.2056601

    Book  MATH  Google Scholar 

  32. S. I. Bezrodnykh, “Formulas for analytic continuation of Horn functions of two variables,” Comput. Math. Math. Phys. 62 (6), 884–903 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu. A. Brychkov and N. V. Savischenko, “On some formulas for the Horn functions \({{H}_{5}}(a,b;c;w,z)\) and \(H_{5}^{c}(a,c;w,z)\),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2021.1938026

    Book  MATH  Google Scholar 

  34. Yu. A. Brychkov and N. V. Savischenko, “On some formulas for the Horn functions \({{H}_{6}}(a,b,b',w,z)\) and \(H_{8}^{{(c)}}(a,b;w,z)\),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2021.2017427

    Book  MATH  Google Scholar 

  35. B. Ananthanarayan, S. Beraay, S. Friot, O. Marichev, and T. Pathak, “On the evaluation of the Appell F 2 double hypergeometric function” (2021). arXiv:2111.05798v1

  36. Yu. A. Brychkov and N. V. Savischenko, “On some formulas for the Horn function \({{H}_{7}}(a,b,b';c;w,z)\),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2022.2056600

    Book  MATH  Google Scholar 

  37. M. Kalmykov, V. Bytev, B. Kniehl, S.-O. Moch, B. Ward, and S. Yost, “Hypergeometric functions and Feynman diagrams,” in Anti-Differentiation and the Calculation of Feynman Amplitudes, Ed. by J. Blümlein and C. Schneider (Springer, Cham, 2021).

    MATH  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grant no. 22-21-00727, https://rscf.ru/project/22-21-00727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Bezrodnykh.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrodnykh, S.I. Formulas for Computing the Lauricella Function in the Case of Crowding of Variables. Comput. Math. and Math. Phys. 62, 2069–2090 (2022). https://doi.org/10.1134/S0965542522120041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522120041

Keywords:

Navigation