Skip to main content
Log in

Unsteady Bending of an Orthotropic Cantilever Timoshenko Beam with Allowance for Diffusion Flux Relaxation

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of unsteady bending of an elastic diffusion orthotropic cantilever Timoshenko beam under loading applied to its free end is considered. The model takes into account that the velocity of propagation of diffusion perturbations is finite due to diffusion flux relaxation. The elastic diffusion processes are described by a coupled system of equations for the Timoshenko beam with allowance for diffusion. A solution of the problem is sought by the method of equivalent boundary conditions. For this purpose, an auxiliary problem is considered, whose solution is obtained by applying the Laplace integral transform in time and trigonometric Fourier series expansions in space. Next, relations connecting the right-hand sides of the boundary conditions of the original and auxiliary problems are constructed. These relations represent a system of Volterra integral equations of the first kind. The system is solved numerically by applying quadrature rules. For an orthotropic beam made of a three-component material, the interaction of unsteady mechanical and diffusion fields is numerically analyzed. Finally, the main conclusions concerning the coupling effect of the fields on the stress-strain state and mass transfer in the beam are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. C. Le, Vibrations of Shells and Rods (Springer-Verlag, Berlin, 1999).

    Book  MATH  Google Scholar 

  2. K. C. Le and J. H. Yi, “An asymptotically exact theory of smart sandwich shells,” Int. J. Eng. Sci. 106, 179–198 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Yu. Mikhailova, D. V. Tarlakovskii, and G. V. Fedotenkov, General Theory of Elastic Shells (Mosk. Aviats. Inst., Moscow, 2018) [in Russian].

    Google Scholar 

  4. R. D. Mindlin and J. Yang, An Introduction to the Mathematical Theory of Vibrations of Elastic Plates (World Scientific, Singapore, 2006).

    Book  Google Scholar 

  5. Yu. M. Pleskachevskii, E. I. Starovoitov, and D. V. Leonenko, Mechanics of Three-Layer Rods and Plates Connected with an Elastic Base (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  6. E. H. Mansfield, The Bending and Stretching of Plates (Cambridge University Press, Cambridge, 2005).

    MATH  Google Scholar 

  7. R. N. Shvets and V. M. Flyachok, “Elastic diffusion equations for anisotropic shells taking account of transverse strains,” Mat. Metody Fiz.-Mekh. Polya, No. 20, 54–61 (1984).

  8. R. N. Shvets and V. M. Flyachok, “Variational approach to the solution of dynamical problems of thermoelastic diffusion for anisotropic shells,” Mat. Fiz. Nelin. Mekh., No. 16, 39–43 (1984).

  9. M. Aouadi and M. I. M. Copetti, “Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory,” Z. Angew. Math. Mech. 2015 (2015). https://doi.org/10.1002/zamm.201400285

  10. M. Copetti and M. Aouadi, “A quasi-static contact problem in thermoviscoelastic diffusion theory,” Appl. N-umer. Math. 109, 157–183 (2016). https://doi.org/10.1051/m2an/2016039

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Aouadi and A. Miranville, “Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin–Pipkin’s model,” Asymptotic Anal. 95, 129–160 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Aouadi, “On thermoelastic diffusion thin plate theory,” Appl. Math. Mech. Eng. Ed. 36 (5), 619–632 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Aouadi and A. Miranville, “Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory,” Evolution Equations Control Theory 4 (3), 241–263 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Bhattacharya and M. Kanoria, “The influence of two temperature generalized thermoelastic diffusion inside a spherical shell,” Int. J. Eng. Tech. Res. 2 (5), 151–159 (2014).

    Google Scholar 

  15. M. Aouadi, “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder,” Int. J. Math. Math. Sci. 6, 1–16 (2006). https://doi.org/10.1155/IJMMS/2006/25976

    Article  MathSciNet  MATH  Google Scholar 

  16. M. A. Elhagary, “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times,” Acta Mech. 218, 5–15 (2011).

    Article  MATH  Google Scholar 

  17. J. J. Tripathi, G. D. Kedar, and K. C. Deshmukh, “Generalized thermoelastic diffusion in a thick circular plate including heat source,” Alexandria Eng. J. 55 (3), 2241–2249 (2016).

    Article  Google Scholar 

  18. V. Zakian, “Numerical inversions of Laplace transforms,” Electron. Lett. 5, 120–121 (1969).

    Article  Google Scholar 

  19. V. I. Krylov and N. S. Skoblya, Methods of Approximate Fourier Transform and Laplace Transform Inversion (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  20. A. V. Zemskov and D. V. Tarlakovskii, “Modelling of unsteady elastic diffusion oscillations of a Timoshenko beam,” Nonlinear Wave Dynamics of Materials and Structures: Advanced Structured Materials (Springer Nature, Switzerland AG, 2020), Vol. 122, pp. 447–461.

    MATH  Google Scholar 

  21. A. V. Vestyak and A. V. Zemskov, “Unsteady elastic diffusion model of a simply supported Timoshenko beam vibrations,” Mech. Solids 55 (5), 690–700 (2020). https://doi.org/10.31857/S0572329920030174

    Article  Google Scholar 

  22. A. V. Zemskov, D. V. Tarlakovskii, and G. M. Faykin, “Unsteady bending of a cantilevered Euler–Bernoulli beam with diffusion,” Comput. Continuum Mech. 14 (1), 40–50 (2021).

    Article  Google Scholar 

  23. A. M. Zenkour, “Thermoelastic diffusion problem for a half-space due to a refined dualphase-lag Green–Naghdi model,” J. Ocean Eng. Sci. 5 (3), 214–222 (2020). https://doi.org/10.1016/j.joes.2019.12.001

    Article  Google Scholar 

  24. P. Ailawaliar and S. Budhiraja, “Dynamic problem in thermoelastic solid using dual-phase-lag model with internal heat source,” J. Math. Sci. Appl. 2 (1), 10–16 (2014).

    Google Scholar 

  25. V. F. Formalev, Heat Transfer in Anisotropic Solids: Numerical Methods, Heat Waves, and Inverse Problems (Fizmatlit, Moscow, 2015) [in Russian].

    Google Scholar 

  26. A. I. Abbas, “The effect of thermal source with mass diffusion in a transversely isotropic thermoelastic infinite medium,” J. Meas. Eng. 2 (4), 175–184 (2014).

    Google Scholar 

  27. S. A. Davydov and A. V. Zemskov, “Thermoelastic diffusion phase-lag model for a layer with internal heat and mass sources,” Int. J. Heat Mass Transfer C 183, 122213 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122213

  28. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus (Pergamon, Oxford, 1965).

    MATH  Google Scholar 

  29. Yu. A. Brychkov, O. I. Marichev, and A. P. Prudnikov, Integrals and Series, Vol. 1: Elementary Functions (Gordon and Breach, New York, 1986).

  30. S. Timoshenko, Strength of Materials (Van Nostrand, New York, 1956).

  31. A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskii, et al., Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and I. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Zemskov or D. V. Tarlakovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

APPENDIX

APPENDIX

1. The coefficients \({{k}_{{1n}}}\left( s \right)\) and the right-hand sides \({{F}_{{1kln}}}\) of system (8) are given by

$${{k}_{{1n}}}\left( s \right) = {{C}_{{66}}}{{k}^{2}}\lambda _{n}^{2} + {{s}^{2}},\quad {{k}_{{2n}}}\left( s \right) = \lambda _{n}^{2} + {{s}^{2}} + a{{C}_{{66}}}{{k}^{2}},\quad {{k}_{{q + 2,n}}}\left( s \right) = \sum\limits_{k = 0}^K \frac{{\tau _{q}^{k}}}{{k!}}{{s}^{{k + 1}}} + D_{1}^{{\left( q \right)}}\lambda _{n}^{2},$$
$$\begin{gathered} {{F}_{{1kln}}} = 2{{C}_{{66}}}{{k}^{2}}{{\lambda }_{n}}{{\delta }_{{1k}}}{{\delta }_{{1l}}} + 2{{C}_{{66}}}{{k}^{2}}{{\left( { - 1} \right)}^{{n + 1}}}{{\delta }_{{1k}}}{{\delta }_{{2l}}}, \\ {{F}_{{2kln}}} = - 2a{{C}_{{66}}}{{k}^{2}}{{\delta }_{{1k}}}{{\delta }_{{1l}}} - 2{{\delta }_{{2k}}}{{\delta }_{{1l}}} + 2{{\left( { - 1} \right)}^{{n + 1}}}{{\lambda }_{n}}{{\delta }_{{2k}}}{{\delta }_{{2l}}}, \\ {{F}_{{q + 2,kln}}} = 2\Lambda _{{11}}^{{\left( q \right)}}{{\lambda }_{n}}{{\delta }_{{2k}}}{{\delta }_{{1l}}} - 2\Lambda _{{11}}^{{\left( q \right)}}{{\left( { - 1} \right)}^{{n + 1}}}\lambda _{n}^{2}{{\delta }_{{2k}}}{{\delta }_{{2l}}} \\ \end{gathered} $$
(25)
$$\, + 2{{\left( { - 1} \right)}^{{n + 1}}}{{\delta }_{{q + 2,k}}}{{\delta }_{{2l}}} + 2{{\lambda }_{n}}\left( {D_{1}^{{\left( q \right)}}{{\delta }_{{q + 2,k}}}{{\delta }_{{1l}}} - \Lambda _{{11}}^{{\left( q \right)}}\sum\limits_{j = 1}^N \,\alpha _{1}^{{\left( j \right)}}{{\delta }_{{j + 2,k}}}{{\delta }_{{1l}}}} \right).$$

2. The polynomials \({{P}_{n}}\left( s \right)\), \({{Q}_{{qn}}}\left( s \right)\), and \({{P}_{{jkln}}}\left( s \right)\) for solutions (10) are given by

$$\begin{array}{*{20}{c}} {{{P}_{n}}\left( s \right) = \left[ {{{k}_{{1n}}}\left( s \right){{k}_{{2n}}}\left( s \right) - C_{{66}}^{2}{{k}^{4}}\lambda _{n}^{2}a} \right]{{\Pi }_{n}}\left( s \right) - \lambda _{n}^{4}{{k}_{{1n}}}\left( s \right)\sum\limits_{j = 1}^N \,\alpha _{1}^{{\left( j \right)}}\Lambda _{{11}}^{{\left( j \right)}}{{\Pi }_{{jn}}}\left( s \right),} \\ {{{Q}_{{qn}}}\left( s \right) = {{k}_{{q + 2,n}}}\left( s \right){{P}_{n}}\left( s \right),\quad {{\Pi }_{n}}\left( s \right) = \prod\limits_{j = 1}^N \,{{k}_{{j + 2,n}}}\left( s \right),\quad {{\Pi }_{{jn}}}\left( s \right) = \prod\limits_{k = 1,k \ne j}^N {\kern 1pt} {{k}_{{k + 2,n}}}\left( s \right);} \end{array}$$
(26)
$$\begin{array}{*{20}{c}} {{{P}_{{111n}}}\left( s \right) = 2{{C}_{{66}}}{{k}^{2}}{{\lambda }_{n}}\left[ {S_{n}^{{\left( 2 \right)}}\left( s \right) - a{{C}_{{66}}}{{k}^{2}}{{\Pi }_{n}}\left( s \right)} \right],} \\ {{{P}_{{121n}}}\left( s \right) = - 2{{C}_{{66}}}{{k}^{2}}{{\lambda }_{n}}S_{n}^{{\left( 1 \right)}}\left( s \right),\quad {{P}_{{1,q + 2,1n}}}\left( s \right) = 2{{C}_{{66}}}{{k}^{2}}\alpha _{1}^{{\left( q \right)}}\lambda _{n}^{3}{{S}_{{qn}}}\left( s \right),} \end{array}$$
(27)
$$\begin{array}{*{20}{c}} {{{P}_{{211n}}}\left( s \right) = 2{{C}_{{66}}}{{k}^{2}}a{{\Pi }_{n}}\left( s \right)\left[ {{{C}_{{66}}}{{k}^{2}}\lambda _{n}^{2} - {{k}_{{1n}}}\left( s \right)} \right],} \\ {{{P}_{{221n}}}\left( s \right) = - 2{{k}_{{1n}}}\left( s \right)S_{n}^{{\left( 1 \right)}}\left( s \right),\quad {{P}_{{2,q + 2,1n}}}\left( s \right) = 2\lambda _{n}^{2}\alpha _{1}^{{\left( q \right)}}{{k}_{{1n}}}\left( s \right){{S}_{{qn}}}\left( s \right),} \end{array}$$
$$\begin{array}{*{20}{c}} {{{P}_{{q + 2,11n}}}\left( s \right) = 2{{C}_{{66}}}{{k}^{2}}\Lambda _{{11}}^{{\left( q \right)}}\lambda _{n}^{3}a\left[ {{{C}_{{66}}}{{k}^{2}}\lambda _{n}^{2} - {{k}_{{1n}}}\left( s \right)} \right]{{\Pi }_{{qn}}}\left( s \right),} \\ {{{P}_{{q + 2,21n}}}\left( s \right) = - 2\Lambda _{{11}}^{{\left( q \right)}}{{k}_{{1n}}}\left( s \right)\lambda _{n}^{3}S_{n}^{{\left( 1 \right)}}\left( s \right),\quad {{P}_{{q + 2,p + 2,1n}}}\left( s \right) = 2\lambda _{n}^{4}{{k}_{{1n}}}\left( s \right)\alpha _{1}^{{\left( p \right)}}\Lambda _{{11}}^{{\left( q \right)}}{{S}_{{qn}}}\left( s \right),} \end{array}$$
$$\begin{array}{*{20}{c}} {{{P}_{{112n}}}\left( s \right) = 2{{C}_{{66}}}{{k}^{2}}{{{\left( { - 1} \right)}}^{{n + 1}}}S_{n}^{{\left( 2 \right)}}\left( s \right),\quad {{P}_{{122n}}}\left( s \right) = 2{{{\left( { - 1} \right)}}^{{n + 1}}}{{C}_{{66}}}{{k}^{2}}\lambda _{n}^{2}S_{n}^{{\left( 1 \right)}}\left( s \right),} \\ {{{P}_{{1,q + 2,2n}}}\left( s \right) = 2{{{\left( { - 1} \right)}}^{{n + 1}}}{{C}_{{66}}}\alpha _{1}^{{\left( q \right)}}{{k}^{2}}\lambda _{n}^{2}{{\Pi }_{{qn}}}\left( s \right),} \end{array}$$
$$\begin{array}{*{20}{c}} {{{P}_{{212n}}}\left( s \right) = 2{{{\left( { - 1} \right)}}^{{n + 1}}}{{a}^{2}}C_{{66}}^{2}{{k}^{4}}{{\lambda }_{n}}{{\Pi }_{n}}\left( s \right),\quad {{P}_{{222n}}}\left( s \right) = 2{{{\left( { - 1} \right)}}^{{n + 1}}}{{\lambda }_{n}}{{k}_{{1n}}}\left( s \right)S_{n}^{{\left( 1 \right)}}\left( s \right),} \\ {{{P}_{{2,q + 2,2n}}}\left( s \right) = 2{{{\left( { - 1} \right)}}^{{n + 1}}}\alpha _{1}^{{\left( q \right)}}{{\lambda }_{n}}{{k}_{{1n}}}\left( s \right){{\Pi }_{{qn}}}\left( s \right),} \end{array}$$
$$\begin{gathered} {{P}_{{q + 2,12n}}}\left( s \right) = 2{{\left( { - 1} \right)}^{{n + 1}}}{{a}^{2}}C_{{66}}^{2}{{k}^{4}}\Lambda _{{11}}^{{\left( q \right)}}\lambda _{n}^{4}{{\Pi }_{n}}\left( s \right),\quad {{P}_{{q + 2,22n}}}\left( s \right) = 2{{\left( { - 1} \right)}^{{n + 1}}}\Lambda _{{11}}^{{\left( q \right)}}\lambda _{n}^{4}{{k}_{{1n}}}\left( s \right)S_{n}^{{\left( 1 \right)}}\left( s \right), \\ {{P}_{{q + 2,p + 2,2n}}}\left( s \right) = 2{{\left( { - 1} \right)}^{{n + 1}}}\alpha _{1}^{{\left( p \right)}}\Lambda _{{11}}^{{\left( q \right)}}\lambda _{n}^{4}{{k}_{{1n}}}\left( s \right){{\Pi }_{{pn}}}\left( s \right), \\ \end{gathered} $$
$$\begin{array}{*{20}{c}} {S_{n}^{{\left( 1 \right)}}\left( s \right) = {{\Pi }_{n}}\left( s \right) - \lambda _{n}^{2}{\kern 1pt} \sum\limits_{j = 1}^N \,\alpha _{1}^{{\left( j \right)}}\Lambda _{{11}}^{{\left( j \right)}}{{\Pi }_{{jn}}}\left( s \right),\quad {{S}_{{qn}}}\left( s \right) = {{\Pi }_{{qn}}}\left( s \right)D_{1}^{{\left( q \right)}} - \sum\limits_{j = 1}^N \,\alpha _{1}^{{\left( j \right)}}\Lambda _{{11}}^{{\left( j \right)}}{{\Pi }_{{jn}}}\left( s \right),} \\ {S_{n}^{{\left( 2 \right)}}\left( s \right) = {{k}_{{2n}}}\left( s \right){{\Pi }_{n}}\left( s \right) - \lambda _{n}^{4}{\kern 1pt} \sum\limits_{j = 1}^N \,\alpha _{1}^{{\left( j \right)}}\Lambda _{{11}}^{{\left( j \right)}}{{\Pi }_{{jn}}}\left( s \right).} \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskov, A.V., Tarlakovskii, D.V. Unsteady Bending of an Orthotropic Cantilever Timoshenko Beam with Allowance for Diffusion Flux Relaxation. Comput. Math. and Math. Phys. 62, 1912–1927 (2022). https://doi.org/10.1134/S0965542522110124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522110124

Keywords:

Navigation