Skip to main content
Log in

Application of the Energy Conservation Law in the Cold Plasma Model

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For the two-fluid hydrodynamic cold plasma model, differential relations characterizing the energy conservation law are derived. The case when the motion of the heavier ions can be neglected as compared with the electrons and the situations with and without allowance for the relativistic factor in the electron dynamics are considered separately. For the problem of free plasma oscillations initiated by a short intense laser pulse, numerical results concerning the fulfillment of the energy conservation law in all above-mentioned situations are presented. The main result is that the reliability of the computations can be improved substantially via the standard theoretical study of the approximation and stability, together with experimental observation of energy conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Fundamentals of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978), pp. 55–60 [in Russian].

    Google Scholar 

  2. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975), pp. 46–51 [in Russian].

    Google Scholar 

  3. V. P. Silin, Introduction to Kinetic Gas Theory (Nauka, Moscow, 1971), p. 119 [in Russian].

    Google Scholar 

  4. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasmas and Plasmalike Media, 2nd ed. (Librokom, Moscow, 2012), pp. 104–110 [in Russian].

    Google Scholar 

  5. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).

    Article  Google Scholar 

  6. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, et al., “On some theoretical problems of laser wake-field accelerators,” J. Plasma Phys. 82 (3), 905820308 (2016).

    Article  Google Scholar 

  7. J. M. Dawson, “Nonlinear electron oscillations in a cold plasma,” Phys. Rev. 113 (2), 383 (1959).

    Article  MathSciNet  Google Scholar 

  8. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2001; Fizmatlit, Moscow, 2012).

  9. A. A. Frolov and E. V. Chizhonkov, “The influence of ion dynamics on the breaking of plane electron oscillations,” Math. Model. Comput. Simul. 8 (4), 409–421 (2016).

    Article  MathSciNet  Google Scholar 

  10. E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma (Fizmatlit, Moscow, 2018; CRC, Boca Raton, 2019).

  11. Radiation Processes in Plasmas, Ed. by G. Bekefi (Wiley, New York, 1966).

    Google Scholar 

  12. L. M. Gorbunov, A. A. Frolov, E. V. Chizhonkov, and N. E. Andreev, “Breaking of nonlinear cylindrical plasma oscillations,” Plasma Phys. Rep. 36 (4), 345 (2010).

    Article  Google Scholar 

  13. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981), pp. 222–281.

    MATH  Google Scholar 

  14. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (McGraw-Hill, New York, 1984).

    MATH  Google Scholar 

  15. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes: An Introduction to the Underlying Theory (Nauka, Moscow, 1973; North-Holland, Amsterdam, 1987).

  16. A. A. Frolov and E. V. Chizhonkov, “Relativistic breaking effect of electron oscillations in a plasma slab,” Vychisl. Metody Program. 15, 537 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Frolov or E. V. Chizhonkov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.A., Chizhonkov, E.V. Application of the Energy Conservation Law in the Cold Plasma Model. Comput. Math. and Math. Phys. 60, 498–513 (2020). https://doi.org/10.1134/S0965542520030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520030094

Keywords:

Navigation