Skip to main content
Log in

A solution of the Blasius problem

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The classical Blasius boundary layer problem in its simplest statement consists in finding an initial value for the function satisfying the Blasius ODE on semi-infinite interval such that a certain condition at infinity be satisfied. Despite an apparent simplicity of the problem and more than a century of effort of numerous scientists, this elusive constant is determined at present numerically and not much better than it was done by Töpfer in 1912. Here we find this (Blasius) constant rigorously in closed form as a convergent series of rational numbers. Asymptotic behaviour, and lower and upper bounds for the partial sums of the series are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Blasius, “Grenzschichten in Fliissigkeiten mit kleiner Reibung,” Z. Math. Phys. 56, 1–37 (1908).

    Google Scholar 

  2. C. Töpfer, “Bemerkungen zu dem Aufsatz von H. Blasius ‘Grenzschichten in Flüssigkeiten mit kleiner Reibung’,” Z. Math. Phys. 60, 397–398 (1912).

    MATH  Google Scholar 

  3. J. P. Boyd, “The Blasius function in the complex plane,” Experiment. Math. 8, 381–394 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Abbasbandy and C. Bervillier, “Analytic continuations of Taylor series and the two-point boundary value problem of some nonlinear ordinary differential equations,” arXiv:1104.5073vl (2011).

    Google Scholar 

  5. L. Crocco, “Sull strato limite laminare nei gas lungo una lamina plana,” Rend. Math. Appl. Ser. 5 21, 138–152 (1941).

    Google Scholar 

  6. B. Brighi, A. Pruchard, and T. Sari, “On the Blasius problem,” Adv. Differ. Eqn. 13, 509–600 (2008).

    MATH  Google Scholar 

  7. F. Ahmad and W. A. Albarakati, “Application of Padé approximation to solve the Blasius problem,” Proc. Pakistan. Acad. Sci. 44(1), 17–19 (2007).

    MathSciNet  Google Scholar 

  8. H. Weyl, “Concerning the differential equations of some boundary-layer problems,” Proc. Natl. Acad. Sci. 27, 578–583 (1941).

    Article  MathSciNet  Google Scholar 

  9. E. Hille, Analytic Functions Theory (Chelsea, NY, 1959), Vol. 1.

    Google Scholar 

  10. A. J. Callegari and M. B. Friedman, “An analytical solution of a nonlinear singular boundary value problem in the theory of viscous fluids,” J. Math. Anal. Appl. 21, 510–529 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Mihoubi and R. Mahdid, “The inverse of power series and the partial Bell polynomials,” J. Integer Sequences 15, 1–16 (2012).

    MathSciNet  Google Scholar 

  12. D. Dominici, “Nested derivatives: A simple method for computing series expansions of inverse functions,” arXiv:math/0501052v2 (2005).

    Google Scholar 

  13. L. V. Ahlfors, Complex Analysis, 3rd ed. (MGH, 1979).

    MATH  Google Scholar 

  14. K. Knopp, Theory and Applications of Infinite Series (Blackie & Son, London, 1946).

    Google Scholar 

  15. D. H. Bailey, “A Fortran-90 based multiprecision system,” ACM Trans. Math. Software 21, 379–387 (1995).

    Article  MATH  Google Scholar 

  16. V. P. Varin, Preprint No. 64, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2010) (http://library.keldysh.ru/preprint.asp?lg=e&id=2010-64).

  17. E. J. Weniger, “Interpolation between sequence transformations,” Numer. Alg. 3, 477–486 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Brezinski and M. R. Zaglia, Extrapolation Methods: Theory and Practice (Elsevier, Amsterdam, 2002).

    Google Scholar 

  19. T. Fessler, W. F. Ford, and D. A. Smith, “Algorithm 602, HURRY: An acceleration algorithm for scalar sequences and series”, ACM Trans. Math. Software 9, 355–357 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Varin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varin, V.P. A solution of the Blasius problem. Comput. Math. and Math. Phys. 54, 1025–1036 (2014). https://doi.org/10.1134/S096554251406013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251406013X

Keywords

Navigation