Skip to main content
Log in

Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The eikonal method for an electromagnetic wave propagating according to the laws of non-linear electrodynamics in vacuum in external electromagnetic and gravitational fields is developed. A mathematical model of the propagation of electromagnetic signals in the parameterized post-Maxwellian electrodynamics in vacuum is constructed. As an example of using the proposed method, the angles of the nonlinear electrodynamical and gravitational curvature of the normal wave rays propagating in the field of a charged collapsar are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Burke, R. I. Field, J. Horton-Smith, et al., “Positron Production in Multiphoton Light-by-Light Scattering,” Phys. Rev. Lett. 79, 1626–1629 (1997).

    Article  Google Scholar 

  2. M. Born and L. Infeld, “Foundation of the New Field Theory,” Proc. Roy. Soc. A 144, 425–430 (1934).

    Article  MATH  Google Scholar 

  3. W. Heisenberg and H. Euler, “Consequences of Dirac Theory of the Positron,” Z. Phys. 26, 714–720 (1936).

    Google Scholar 

  4. V. R. Khalilov, Electrons in a Strong Electromagnetic Field (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  5. V. I. Denisov and I. P. Denisova, “Verifiable post-Maxwellian Effect of the Nonlinear Electrodynamics in Vacuum,” Opt. Spektrosk. 90, 329–335 (2001) [Opt. Spectrosc. 90, 282–287 (2001)].

    Article  Google Scholar 

  6. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1981; Energoatomizdat, Moscow, 1985).

    Google Scholar 

  7. V. I. Denisov, “New Effect in Nonlinear Born-Infeld Electrodynamics,” Phys. Rev. D 61(3), 036004 (2000).

    Article  MathSciNet  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  9. R. Courant, Partielle Differentialgleichungen (Gottingen, 1932; Mir, Moscow, 1964).

    Google Scholar 

  10. I. P. Denisova, Introduction to Tensor Calculus and Its Applications (UNTs DO, Moscow, 2004) [in Russian].

    Google Scholar 

  11. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Partial Differential Equations of Mathematical Physics (Vysshaya Shkola, Moscow, 1970) [in Russian].

    Google Scholar 

  12. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1983; Mir, Moscow, 1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.A. Vshivtseva, M.M. Denisov, 2009, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2009, Vol. 49, No. 12, pp. 2189–2200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vshivtseva, P.A., Denisov, M.M. Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics. Comput. Math. and Math. Phys. 49, 2092–2102 (2009). https://doi.org/10.1134/S0965542509120094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542509120094

Key words

Navigation