Skip to main content
Log in

Autoresonance excitation of a breather in weak ferromagnetics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A mathematical model of the magnetodynamics of a weak ferromagnetic in an external magnetic field with variable frequency is studied. Conditions for the appearance of autoresonance are found under which the amplitude of the local magnetic inhomogeneities is considerably increased. Mathematically, the problem is to analyze the solutions to the sine-Gordon equation subject to a specific nonautonomous perturbation. For the perturbed equation, asymptotic solutions in the form of a breather with a slowly varying amplitude and a phase shift are constructed. The solutions whose amplitude increases with time from small values to quantities of order one are associated with the autoresonance phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Karpman, E. M. Maslov, and V. V. Solov’ev, Dynamics of Biions in Josephson Functions, Zh. Eksp. Teor. Fiz. 23(1), 289–300 (1983).

    Google Scholar 

  2. A. M. Kosevich and Yu. S. Kivshar’, “Evolution of a Soliton-Antisoliton Pair under the Influence of Perturbations in a System Governed by the Sine-Gordon Equation,” Fiz. Nizk. Temp. 8, 1270–1284 (1982).

    Google Scholar 

  3. A. Newell, “The Inverse Scattering Transform,” in Solitons, Ed. by R. K. Bullough and P. J. Caudrey (Springer, Berlin, 1980; Mir, Moscow, 1983), pp. 177–242.

    Google Scholar 

  4. B. Meerson and L. Friedland, “Strong Autoresonance Excitation of Rydberg Atoms: the Rydberg Accelerator,” Phys. Rev. A: 41, 5233–5236 (1990).

    Article  Google Scholar 

  5. L. Friedland, “Subharmonic Autoresonance,” Phys. Rev. E: 61(4), 3732–3735 (2000).

    Article  Google Scholar 

  6. J. Fajans and L. Friedland, “Autoresonant (Non Stationary) Excitation of a Pendulum. Plutinos, Plasmas and Other Nonlinear Oscillators,” Am. J. Phys. 69, 1096–1102 (2001).

    Article  Google Scholar 

  7. L. A. Kalyakin, “Autoresonance in a Dynamical System,” in Modern Mathematics and Its Applications (Moscow, 2003), Vol. 5, pp. 79–108 [in Russian].

    Google Scholar 

  8. L. A. Kalyakin, “Justification of Asymptotic Expansions for the Principal Resonance Equations,” Proc. Steklov Inst. Math., Suppl. 1, S108–S122 (2003).

  9. R. N. Garifullin, “Construction of Asymptotic Solutions in the Autoresonance Problem,” Dokl. Akad. Nauk 398, 306–309 (2004) [Dokl. Math. 70, 799–802 (2004)].

    Google Scholar 

  10. L. Friedland and A. G. Shagalov, “Excitation of Multiphase Waves of Nonlinear Schrödinger Equation by Capture into Resonances,” Phys. Rev. E71, 036206-1:12 (2005).

    Google Scholar 

  11. M. A. Shamsutdinov, I. Yu. Lomakina, and V. N. Nazarov, “Dynamics of Local Magnetic Inhomogeneities in Weak Ferromagnetics in a Magnetic Field with Damping,” Teor. Metallov 100(5), 17–33 (2005).

    Google Scholar 

  12. A. K. Zvezdin, “Dynamics of Domain Boundaries in Weak Ferromagnetics,” Pis’ma Zh. Eksp. Teor. Fiz. 29, 605–610 (1979).

    Google Scholar 

  13. V. G. Bir’yakhtar, B. A. Ivanov, and A. L. Sukstanskii, “Nonlinear Waves and the Dynamics of Domain Boundaries in Weak Ferromagnetics,” Zh. Eksp. Teor. Fiz. 78, 1509–1522 (1980).

    Google Scholar 

  14. V. I. Veksler, “A New Method for Accelerating Relativistic Particles,” Dokl. Akad. Nauk SSSR 43, 346–348 (1944).

    Google Scholar 

  15. V. I. Veksler, “A New Method for Accelerating Relativistic Particles,” Dokl. Akad. Nauk SSSR 43, 393–396 (1944).

    Google Scholar 

  16. E. M. McMillan, “Resonance Acceleration of Charged Particles,” Phys. Rev. 70, 800 (1946).

    Google Scholar 

  17. K. S. Golovanevskii, “Hydromagnetic Autoresonance with Variable Frequency,” Fiz. Plazmy 11(3), 295–299 (1985).

    Google Scholar 

  18. N. N. Bogolyubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974; Gordon and Breach, New York, 1961).

    Google Scholar 

  19. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics: From Pendulum to Turbulence and Chaos (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. L. A. Kalyakin, “Averaging in an Autoresonance Model,” Mat. Zametki 73, 449–452 (2003).

    Google Scholar 

  21. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; American Mathematical Society, Providence, R.I., 1992).

    MATH  Google Scholar 

  22. B. V. Chirikov, “Passage of a Nonlinear Oscillatory System through Resonance,” Dokl. Akad. Nauk SSSR 125, 1015–1018 (1959).

    Google Scholar 

  23. A. D. Bruno, Power Geometry in Algebraic and Differential Equations (Nauka, Moscow, 1998; Elsevier, Amsterdam, 2000).

    Google Scholar 

  24. V. V. Kozlov and S. D. Furta, Asymptotic Behavior of Solutions to Strongly Nonlinear Systems of Differential Equations (Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.N. Garifullin, L.A. Kalyakin, M.A. Shamsutdinov, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 7, pp. 1208–1220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garifullin, R.N., Kalyakin, L.A. & Shamsutdinov, M.A. Autoresonance excitation of a breather in weak ferromagnetics. Comput. Math. and Math. Phys. 47, 1158–1170 (2007). https://doi.org/10.1134/S0965542507070081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507070081

Keywords

Navigation